He S, Wu J, Lian C, Gach H M, Mutic S, Bosch W, Michalski J, Li H
Department of Computer Science, Washington University, St. Louis, MO, USA.
Department of Radiation Oncology, Washington University, St. Louis, MO, USA.
Ing Rech Biomed. 2021 Oct;42(5):334-344. doi: 10.1016/j.irbm.2020.06.001. Epub 2020 Jun 9.
Active learning is an effective solution to interactively select a limited number of informative examples and use them to train a learning algorithm that can achieve its optimal performance for specific tasks. It is suitable for medical image applications in which unlabeled data are abundant but manual annotation could be very time-consuming and expensive. However, designing an effective active learning strategy for informative example selection is a challenging task, due to the intrinsic presence of noise in medical images, the large number of images, and the variety of imaging modalities. In this study, a novel low-rank modeling-based multi-label active learning (LRMMAL) method is developed to address these challenges and select informative examples for training a classifier to achieve the optimal performance. The proposed method independently quantifies image noise and integrates it with other measures to guide a pool-based sampling process to determine the most informative examples for training a classifier. In addition, an automatic adaptive cross entropy-based parameter determination scheme is proposed for further optimizing the example sampling strategy. Experimental results on varied medical image datasets and comparisons with other state-of-the-art multi-label active learning methods illustrate the superior performance of the proposed method.
主动学习是一种有效的解决方案,用于交互式地选择有限数量的信息性示例,并使用它们来训练一种学习算法,该算法可以针对特定任务实现其最佳性能。它适用于医学图像应用,其中未标记的数据丰富,但手动标注可能非常耗时且昂贵。然而,由于医学图像中固有噪声的存在、图像数量众多以及成像模态的多样性,设计一种有效的用于信息性示例选择的主动学习策略是一项具有挑战性的任务。在本研究中,开发了一种基于低秩建模的新型多标签主动学习(LRMMAL)方法来应对这些挑战,并选择信息性示例以训练分类器以实现最佳性能。所提出的方法独立量化图像噪声,并将其与其他度量相结合,以指导基于池的采样过程,从而确定用于训练分类器的最具信息性的示例。此外,还提出了一种基于自动自适应交叉熵的参数确定方案,以进一步优化示例采样策略。在各种医学图像数据集上的实验结果以及与其他最新的多标签主动学习方法的比较,说明了所提出方法的优越性能。