Suppr超能文献

一种基于自适应低秩建模的医学图像标注主动学习方法

An Adaptive Low-Rank Modeling-Based Active Learning Method for Medical Image Annotation.

作者信息

He S, Wu J, Lian C, Gach H M, Mutic S, Bosch W, Michalski J, Li H

机构信息

Department of Computer Science, Washington University, St. Louis, MO, USA.

Department of Radiation Oncology, Washington University, St. Louis, MO, USA.

出版信息

Ing Rech Biomed. 2021 Oct;42(5):334-344. doi: 10.1016/j.irbm.2020.06.001. Epub 2020 Jun 9.

Abstract

Active learning is an effective solution to interactively select a limited number of informative examples and use them to train a learning algorithm that can achieve its optimal performance for specific tasks. It is suitable for medical image applications in which unlabeled data are abundant but manual annotation could be very time-consuming and expensive. However, designing an effective active learning strategy for informative example selection is a challenging task, due to the intrinsic presence of noise in medical images, the large number of images, and the variety of imaging modalities. In this study, a novel low-rank modeling-based multi-label active learning (LRMMAL) method is developed to address these challenges and select informative examples for training a classifier to achieve the optimal performance. The proposed method independently quantifies image noise and integrates it with other measures to guide a pool-based sampling process to determine the most informative examples for training a classifier. In addition, an automatic adaptive cross entropy-based parameter determination scheme is proposed for further optimizing the example sampling strategy. Experimental results on varied medical image datasets and comparisons with other state-of-the-art multi-label active learning methods illustrate the superior performance of the proposed method.

摘要

主动学习是一种有效的解决方案,用于交互式地选择有限数量的信息性示例,并使用它们来训练一种学习算法,该算法可以针对特定任务实现其最佳性能。它适用于医学图像应用,其中未标记的数据丰富,但手动标注可能非常耗时且昂贵。然而,由于医学图像中固有噪声的存在、图像数量众多以及成像模态的多样性,设计一种有效的用于信息性示例选择的主动学习策略是一项具有挑战性的任务。在本研究中,开发了一种基于低秩建模的新型多标签主动学习(LRMMAL)方法来应对这些挑战,并选择信息性示例以训练分类器以实现最佳性能。所提出的方法独立量化图像噪声,并将其与其他度量相结合,以指导基于池的采样过程,从而确定用于训练分类器的最具信息性的示例。此外,还提出了一种基于自动自适应交叉熵的参数确定方案,以进一步优化示例采样策略。在各种医学图像数据集上的实验结果以及与其他最新的多标签主动学习方法的比较,说明了所提出方法的优越性能。

相似文献

4
Temporal Output Discrepancy for Loss Estimation-Based Active Learning.
IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):2109-2123. doi: 10.1109/TNNLS.2022.3186855. Epub 2024 Feb 5.
9
Deep Active Learning Open-Set Recognition.深度主动学习开放集识别
Front Artif Intell. 2022 Feb 7;5:737363. doi: 10.3389/frai.2022.737363. eCollection 2022.

本文引用的文献

3
Large-scale retrieval for medical image analytics: A comprehensive review.大规模医学图像分析检索:全面综述。
Med Image Anal. 2018 Jan;43:66-84. doi: 10.1016/j.media.2017.09.007. Epub 2017 Oct 2.
4
Radiomics: Images Are More than Pictures, They Are Data.放射组学:图像不止是图片,它们是数据。
Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18.
6
Deep learning in neural networks: an overview.神经网络中的深度学习:综述。
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.
8
Medical image restoration with different types of noise.不同类型噪声下的医学图像恢复
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4382-5. doi: 10.1109/EMBC.2012.6346937.
9
Semantic-gap-oriented active learning for multilabel image annotation.面向语义鸿沟的多标签图像标注主动学习
IEEE Trans Image Process. 2012 Apr;21(4):2354-60. doi: 10.1109/TIP.2011.2180916. Epub 2011 Dec 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验