文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Fluorescence Imaging of Inflammation with Optical Probes.

作者信息

Li Cheng, Zhou Sensen, Chen Jian, Jiang Xiqun

机构信息

MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210023, China.

出版信息

Chem Biomed Imaging. 2023 Jun 1;1(6):495-508. doi: 10.1021/cbmi.3c00039. eCollection 2023 Sep 25.


DOI:10.1021/cbmi.3c00039
PMID:39473573
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11503926/
Abstract

Inflammation plays an important role in the occurrence and development of disease; dysregulation of inflammatory progression often leads to disease such as tissue sclerosis, cancers, stroke, etc. Optical imaging technology, due to its higher sensitivity and resolution, can provide finer images for the observation of inflammation. Many optical probes have been developed as contrast agents for optical imaging techniques in different diseases. In this review, we summarize the recent advances of optical probe and imaging methods for imaging inflammation in different organs, such as brain, liver, lung, kidney, intestine, etc. Finally, we discuss the opportunities and challenges of optical probes used in the clinic for inflammation monitoring and prospect their future development in disease detection.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/076b2d150c16/im3c00039_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/462f83bd5365/im3c00039_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/f6b9b65d6f6e/im3c00039_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/edb57ab61bf6/im3c00039_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/d3ec461cc315/im3c00039_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/ed2d5a9f29ce/im3c00039_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/85e76e5b61b4/im3c00039_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/be6107530149/im3c00039_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/6d531e2fcbff/im3c00039_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/076b2d150c16/im3c00039_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/462f83bd5365/im3c00039_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/f6b9b65d6f6e/im3c00039_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/edb57ab61bf6/im3c00039_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/d3ec461cc315/im3c00039_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/ed2d5a9f29ce/im3c00039_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/85e76e5b61b4/im3c00039_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/be6107530149/im3c00039_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/6d531e2fcbff/im3c00039_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab5/11503926/076b2d150c16/im3c00039_0009.jpg

相似文献

[1]
Fluorescence Imaging of Inflammation with Optical Probes.

Chem Biomed Imaging. 2023-6-1

[2]
Ratiometric Optical and Photoacoustic Imaging in the Second Near-Infrared Window.

Acc Chem Res. 2023-11-21

[3]
Recent Advances of Molecular Optical Probes in Imaging of β-Galactosidase.

Bioconjug Chem. 2019-7-22

[4]
Optical Probes for Neurobiological Sensing and Imaging.

Acc Chem Res. 2018-4-13

[5]
Looking deep inside tissue with photoacoustic molecular probes: a review.

J Biomed Opt. 2022-7

[6]
In vivo optical molecular imaging of inflammation and immunity.

J Mol Med (Berl). 2021-10

[7]
Recent Advances in the Development of Optical Imaging Probes for γ-Glutamyltranspeptidase.

Chembiochem. 2018-9-19

[8]
Polyethylene glycol–coated gold nanoshells conjugated with anti-VCAM-1 antibody

2004

[9]
Advances in Optical Imaging of Nonalcoholic Fatty Liver Disease.

Chem Asian J. 2022-6-15

[10]
Design Strategy of Fluorescent Probes for Live Drug-Induced Acute Liver Injury Imaging.

Acc Chem Res. 2021-1-19

引用本文的文献

[1]
Smart molecular probes with controllable photophysical property for smart medicine.

Smart Mol. 2024-9-4

[2]
Application of Nanomaterials in Early Imaging and Advanced Treatment of Atherosclerosis.

Chem Biomed Imaging. 2025-1-21

本文引用的文献

[1]
Advanced Biomaterials with Intrinsic Immunomodulation Effects for Cancer Immunotherapy.

Small Methods. 2023-5

[2]
Liver-Targeted Near-Infrared Fluorescence/Photoacoustic Dual-Modal Probe for Real-Time Imaging of Hepatic Inflammation.

Anal Chem. 2023-1-31

[3]
A ratiometric near-infrared fluorescence/photoacoustic dual-modal probe with strong donor dithienopyrrole for in vivo nitric oxide detection.

Biomaterials. 2023-3

[4]
An oral ratiometric NIR-II fluorescent probe for reliable monitoring of gastrointestinal diseases in vivo.

Biomaterials. 2023-2

[5]
Caspase-1-responsive fluorescence biosensors for monitoring endogenous inflammasome activation.

Biosens Bioelectron. 2023-1-1

[6]
Early diagnostic imaging of pneumonia with an ultra-sensitive two-photon near-infrared fluorescent probe.

J Mater Chem B. 2022-10-19

[7]
Triazole-derivatized near-infrared cyanine dyes enable local functional fluorescent imaging of ocular inflammation.

Biosens Bioelectron. 2022-11-15

[8]
Monitoring of patients with rheumatoid arthritis by indocyanine green (ICG)-enhanced fluorescence optical imaging treated with anti-TNFα therapy.

Arthritis Res Ther. 2022-5-21

[9]
Atherosclerosis: Recent developments.

Cell. 2022-5-12

[10]
In-Sequence High-Specificity Dual-Reporter Unlocking of Fluorescent Probe Enables the Precise Identification of Atherosclerotic Plaques.

Angew Chem Int Ed Engl. 2022-7-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索