Cervo Brain Research Centre, Québec, Canada.
Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada.
J Biomed Opt. 2024 Oct;29(10):105002. doi: 10.1117/1.JBO.29.10.105002. Epub 2024 Oct 29.
Tissues like skin have a layered structure where each layer's optical properties vary significantly. However, traditional diffuse reflectance spectroscopy assumes a homogeneous medium, often leading to estimations that reflects the properties of neither layer. There's a clear need for probes that can precisely measure the optical properties of layered tissues.
This paper aims to design a diffuse reflectance probe capable of accurately estimating the optical properties of bilayer tissues in the subdiffusive regime.
Using Monte Carlo simulations, we evaluated key geometric factors-fiber placement, tilt angle, diameter, and numerical aperture-on optical property estimation, following the methodology in Part I. A robust design is proposed that balances accurate intrinsic optical property (IOP) calculations with practical experimental constraints.
The designed probe, featuring eight illumination and eight detection fibers with varying spacings and tilt angles. The estimation error of the IOP calculation for bilayer phantoms is less than 20% for top layers with thicknesses between 0.2 and 1.0 mm.
Building on the approach from Part I and using a precise calibration, the probe effectively quantified and distinguished the IOPs of bilayer samples, particularly those relevant to early skin pathology detection and characterization.
皮肤等组织具有分层结构,每层的光学性质差异很大。然而,传统的漫反射光谱法假设为均匀介质,这往往导致估计结果既不能反映各层的性质。显然需要能够精确测量分层组织光学性质的探头。
本研究旨在设计一种漫反射探头,能够在亚扩散区域准确估计双层组织的光学性质。
我们使用蒙特卡罗模拟,根据第一部分的方法,评估了光纤放置、倾斜角、直径和数值孔径等关键几何因素对光性质估计的影响。提出了一种稳健的设计,在精确计算固有光学性质(IOP)和实际实验限制之间取得平衡。
设计的探头具有 8 个照明和 8 个探测光纤,具有不同的间距和倾斜角。对于厚度在 0.2 至 1.0 毫米之间的顶层,双层模型的 IOP 计算的估计误差小于 20%。
基于第一部分的方法并使用精确的校准,该探头有效地量化和区分了双层样本的 IOP,特别是那些与早期皮肤病理检测和特征分析相关的 IOP。