Hasan Md Zahid, Yan Jing, Zhu Caigang
University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States.
J Biomed Opt. 2024 Dec;29(12):125002. doi: 10.1117/1.JBO.29.12.125002. Epub 2024 Dec 31.
Cellular metabolism is highly dynamic and strongly influenced by its local vascular microenvironment, gaining a systems-level view of cell metabolism is essential in understanding many critical biomedical problems in a broad range of disciplines. However, very few existing metabolic tools can quantify the major metabolic and vascular parameters together in biological tissues with easy access.
We aim to fill the technical gap by demonstrating a point-of-care, easy-to-use, easy-to-access, rapid, systematic optical spectroscopy platform for metabolic and vascular characterizations on biological models to enable scientific discoveries to translate more efficiently to clinical interventions.
We developed a highly portable optical spectroscopy platform with a tumor-sensitive fiber probe and easy-to-use spectroscopic algorithms for multi-parametric metabolic and vascular characterizations of biological tissues . We then demonstrated our optical spectroscopy on tissue-mimicking phantoms, human subjects, and small tumor models. We also validated the proposed easy-to-use algorithms with the Monte Carlo inversion models for accurate and rapid spectroscopic data processing.
Our tissue-mimicking phantom, human subjects, and animal studies showed that our portable optical spectroscopy along with the new spectroscopic algorithms could quantify the major metabolic and vascular parameters on biological tissues with a high accuracy. We also captured the highly diverse metabolic and vascular phenotypes of head and neck tumors with different radiation sensitivities.
Our highly portable optical spectroscopy platform along with easy-to-use spectroscopic algorithms will provide an easy-to-access way for rapid and systematic characterizations of biological tissue metabolism and vascular microenvironment , which may significantly advance translational cancer research in the future.
细胞代谢具有高度动态性,并受到其局部血管微环境的强烈影响,从系统层面了解细胞代谢对于理解广泛学科中的许多关键生物医学问题至关重要。然而,现有的代谢工具中很少有能够方便地同时量化生物组织中的主要代谢和血管参数的。
我们旨在填补这一技术空白,展示一种即时可用、易于使用、易于获取、快速且系统的光学光谱平台,用于对生物模型进行代谢和血管特征分析,以使科学发现能够更有效地转化为临床干预措施。
我们开发了一种高度便携的光学光谱平台,配备肿瘤敏感光纤探头和易于使用的光谱算法,用于对生物组织进行多参数代谢和血管特征分析。然后,我们在组织模拟体模、人体受试者和小型肿瘤模型上展示了我们的光学光谱技术。我们还使用蒙特卡罗反演模型验证了所提出的易于使用的算法,以进行准确快速的光谱数据处理。
我们的组织模拟体模、人体受试者和动物研究表明,我们的便携式光学光谱技术与新的光谱算法能够高精度地量化生物组织中的主要代谢和血管参数。我们还捕捉到了具有不同辐射敏感性的头颈部肿瘤高度多样的代谢和血管表型。
我们高度便携的光学光谱平台以及易于使用的光谱算法将为快速系统地表征生物组织代谢和血管微环境提供一种易于获取的方法,这可能在未来显著推动转化性癌症研究。