Yan Gerald Q, McLaughlin Nathan, Yamamoto Tatsuya, Li Senlei, Nozaki Takayuki, Yuasa Shinji, Du Chunhui Rita, Wang Hailong
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Department of Physics, University of California, San Diego, La Jolla, California 92093, United States.
Nano Lett. 2024 Nov 13;24(45):14273-14278. doi: 10.1021/acs.nanolett.4c03882. Epub 2024 Oct 30.
Nitrogen vacancy (NV) centers, atomic spin defects in diamond, represent an active contender for advancing transformative quantum information science (QIS) and innovations. One of the major challenges for designing NV-based hybrid systems for QIS applications results from the difficulty of realizing local control of individual NV spin qubits in a scalable and energy-efficient way. To address this bottleneck, we introduce magnetic tunnel junction (MTJ) devices to establish coherent driving of an NV center by a resonant MTJ with voltage controlled magnetic anisotropy. We show that the oscillating magnetic stray field produced by a resonant micromagnet can be utilized to effectively modify and drive NV spin rotations when the NV frequency matches the corresponding resonance conditions of the MTJ. Our results present a new pathway to achieve all-electric control of an NV spin qubit with reduced power consumption and improved solid-state scalability for implementing cutting-edge QIS technological applications.
氮空位(NV)中心是金刚石中的原子自旋缺陷,是推动变革性量子信息科学(QIS)和创新的有力竞争者。为量子信息科学应用设计基于NV的混合系统面临的主要挑战之一,源于难以以可扩展且节能的方式实现对单个NV自旋量子比特的局部控制。为解决这一瓶颈,我们引入磁隧道结(MTJ)器件,通过具有电压控制磁各向异性的共振MTJ来建立NV中心的相干驱动。我们表明,当NV频率与MTJ的相应共振条件匹配时,共振微磁体产生的振荡杂散磁场可用于有效改变和驱动NV自旋旋转。我们的结果为实现NV自旋量子比特的全电控制提供了一条新途径,降低了功耗,并提高了用于实现前沿量子信息科学技术应用的固态可扩展性。