Somboon Kamolrat, Melling Oliver, Lejeune Maylis, Pinheiro Glaucia M S, Paquelin Annick, Bardiaux Benjamin, Nilges Michael, Delepelaire Phillippe, Khalid Syma, Izadi-Pruneyre Nadia
School of Chemistry, University of Southampton, Southampton, United Kingdom.
Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, Paris, France.
mBio. 2024 Dec 11;15(12):e0178124. doi: 10.1128/mbio.01781-24. Epub 2024 Oct 30.
The envelope of Gram-negative bacteria is composed of two membranes separated by the periplasmic space. This organization imposes geometrical and distance constraints that are key for the mechanism of action of multicomponent systems spanning the envelope. However, consideration of all three compartments by experimental approaches is still elusive. Here, we have used the state-of-the-art molecular dynamics simulation in an envelope model to obtain a dynamic view of molecular interactions between the outer membrane heme transporter HasR and the inner membrane TonB-like protein HasB. Their interaction allows the transfer of the inner membrane proton-motive force derived energy to the transporter for heme internalization. The simulations that incorporate both membranes show the key role of periplasmic domains of both proteins and their dynamics in complex formation and stability. They revealed a previously unidentified network of HasR-HasB protein-protein interactions in the periplasm. Experimental validation (mutations, phenotypic and biophysical assays) provides support for the simulation-predicted interactions. Based on structural and sequence conservation, the network of interaction revealed in this study is expected to occur in other nutrient import systems.
Gram-negative bacteria import scarce nutrients such as metals and vitamins by an energized mechanism involving a multicomponent protein system that spans the cell envelope. It consists of an outer membrane TonB-dependent transporter (TBDT) and a TonB complex in the inner membrane that provides the proton motive force energy for the nutrient entry. Despite the intense research efforts focused on this system (a) from structural and fundamental microbiology perspectives and (b) for the interest in the development of new antibacterial strategies, the molecular mechanism of the system is not at all well understood. The lack of understanding comes from incomplete structural data and the experimental difficulties of studying an inherently flexible multicomponent complex that resides within the heterogeneous environment of the double membrane bacterial cell envelope. To address these challenges and obtain a comprehensive view of the molecular interactions at atomic level, here, we have used the combined power of advanced molecular simulations and complementary microbiology and biochemical experiments. Our results represent a significant step forward in understanding the structural and molecular bases of this vital mechanism.
革兰氏阴性菌的包膜由两层被周质空间分隔的膜组成。这种结构施加了几何和距离限制,这对于跨越包膜的多组分系统的作用机制至关重要。然而,通过实验方法同时考虑所有三个区室仍然难以实现。在这里,我们在包膜模型中使用了最先进的分子动力学模拟,以获得外膜血红素转运蛋白HasR和内膜类TonB蛋白HasB之间分子相互作用的动态视图。它们的相互作用允许将源自内膜质子动力的能量转移到转运蛋白以实现血红素内化。包含两层膜的模拟显示了两种蛋白质的周质结构域在复合物形成和稳定性中的关键作用及其动态变化。它们揭示了周质中一个以前未被识别的HasR - HasB蛋白质 - 蛋白质相互作用网络。实验验证(突变、表型和生物物理测定)为模拟预测的相互作用提供了支持。基于结构和序列保守性,本研究中揭示的相互作用网络预计会出现在其他营养物质导入系统中。
革兰氏阴性菌通过一种涉及跨越细胞膜包膜的多组分蛋白质系统的能量驱动机制来导入金属和维生素等稀缺营养物质。它由外膜TonB依赖性转运蛋白(TBDT)和内膜中的TonB复合物组成,后者为营养物质进入提供质子动力能量。尽管从(a)结构和基础微生物学角度以及(b)对开发新抗菌策略的兴趣出发,对该系统进行了大量研究工作,但该系统的分子机制仍未得到很好的理解。理解不足源于不完整的结构数据以及研究存在于双膜细菌细胞膜包膜异质环境中的固有柔性多组分复合物的实验困难。为了应对这些挑战并在原子水平上全面了解分子相互作用,在这里,我们结合了先进分子模拟与补充性微生物学和生化实验的力量。我们的结果代表了在理解这一重要机制的结构和分子基础方面向前迈出的重要一步。