Reynolds Michael, Oliver Patricia A K, Wood Tania, Yip Eugene, Tari Shima Y, Wachowicz Keith, Burke Ben, Fallone B Gino
Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada.
University of Alberta, Department of Oncology, Division of Medical Physics, Edmonton, Alberta, Canada.
Med Phys. 2025 Feb;52(2):1235-1242. doi: 10.1002/mp.17495. Epub 2024 Oct 30.
In the last decade, hybrid linear accelerator magnetic resonance imaging (Linac-MR) devices have evolved into FDA-cleared clinical tools, facilitating magnetic resonance guided radiotherapy (MRgRT). The addition of a magnetic field to radiation therapy has previously demonstrated dosimetric and electron effects regardless of magnetic field orientation.
This study uses Monte Carlo simulations to investigate the importance and efficacy of the magnetic field design in mitigating surface dose enhancement in the Aurora-RT, focusing specifically on contaminant electrons, their origin, and energy spectrum.
The Aurora-RT 0.5 T Biplanar Linac-MR device was modeled using the BEAMnrc package using the updated EM macros, a magnetic field map generated from Opera 3D. Simulation generated phasespace data at the distal side of the first magnetic pole plate (89 cm) and at machine isocenter (120 cm) were analyzed with respect to electron energy spectra and electron creation origins, both with and without the static magnetic field.
The presence of the main magnetic field was verified to affect the origin and distribution of contaminant electrons, removing them from the air column up to 60 cm from the target, and focusing them along the CAX within the region below. Analysis of the remaining electron energy fluence reveals the net removal of electrons with energies > 2 MeV and generation of electrons with energies < 2 MeV in the presence of the static magnetic field as compared to no magnetic field. Moreover, in the presence of the magnetic field the integral energy contained in the contaminant electrons increases from 89 cm to isocenter but is still 15% less overall than the integral energy contained in contaminant electrons without the magnetic field.
This study provides an analysis of contaminant electrons in the Aurora-RT 0.5 T Linac-MR, emphasizing the role of magnetic field design in successfully minimizing electron contaminants.
在过去十年中,混合式直线加速器磁共振成像(直线加速器 - 磁共振)设备已发展成为获得美国食品药品监督管理局(FDA)批准的临床工具,推动了磁共振引导放射治疗(MRgRT)的发展。先前的研究表明,无论磁场方向如何,在放射治疗中添加磁场都会产生剂量学和电子效应。
本研究使用蒙特卡罗模拟来研究磁场设计在减轻Aurora - RT表面剂量增强方面的重要性和有效性,特别关注污染电子、其来源和能谱。
使用BEAMnrc软件包对Aurora - RT 0.5T双平面直线加速器 - 磁共振设备进行建模,采用更新后的电磁宏和由Opera 3D生成的磁场图。对在第一磁极板远端(89厘米)和机器等中心(120厘米)处模拟生成的相空间数据进行分析,研究有无静磁场情况下的电子能谱和电子产生源。
证实主磁场的存在会影响污染电子的来源和分布,将其从距靶标60厘米以内的气柱中去除,并将它们集中在下方区域的中心轴线上。对剩余电子能量注量的分析表明,与无磁场相比,在静磁场存在的情况下,能量大于2MeV的电子被净去除,同时产生了能量小于2MeV的电子。此外,在磁场存在的情况下,污染电子中包含的积分能量从89厘米处增加到等中心处,但总体仍比无磁场时污染电子中包含的积分能量少15%。
本研究对Aurora - RT 0.5T直线加速器 - 磁共振中的污染电子进行了分析,强调了磁场设计在成功减少电子污染方面的作用。