Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
Appl Microbiol Biotechnol. 2024 Oct 30;108(1):499. doi: 10.1007/s00253-024-13319-8.
Tyramine has attracted considerable interest due to recent findings that it is an excellent starting material for the production of high-performance thermoplastics and hydrogels. Furthermore, tyramine is a precursor of a diversity of pharmaceutically relevant compounds, contributing to its growing importance. Given the limitations of chemical synthesis, including lack of selectivity and laborious processes with harsh conditions, the biosynthesis of tyramine by decarboxylation of L-tyrosine represents a promising sustainable alternative. In this study, the de novo production of tyramine from simple nitrogen and sustainable carbon sources was successfully established by metabolic engineering of the L-tyrosine overproducing Corynebacterium glutamicum strain AROM3. A phylogenetic analysis of aromatic-L-amino acid decarboxylases (AADCs) revealed potential candidate enzymes for the decarboxylation of tyramine. The heterologous overexpression of the respective AADC genes resulted in successful tyramine production, with the highest tyramine titer of 1.9 g L obtained for AROM3 overexpressing the tyrosine decarboxylase gene of Levilactobacillus brevis. Further metabolic engineering of this tyramine-producing strain enabled tyramine production from the alternative carbon sources ribose and xylose. Additionally, up-scaling of tyramine production from xylose to a 1.5 L bioreactor batch fermentation was demonstrated to be stable, highlighting the potential for sustainable tyramine production. KEY POINTS: • Phylogenetic analysis revealed candidate l-tyrosine decarboxylases • C. glutamicum was engineered for de novo production of tyramine • Tyramine production from alternative carbon substrates was enabled.
由于最近的发现表明,酪胺是生产高性能热塑性塑料和水凝胶的极好原料,因此它引起了相当大的关注。此外,酪胺是多种具有药用相关性的化合物的前体,这使其变得越来越重要。鉴于化学合成存在局限性,包括缺乏选择性和在苛刻条件下进行繁琐的过程,因此通过 L-酪氨酸脱羧作用来生物合成酪胺代表了一种有前途的可持续替代方法。在这项研究中,通过代谢工程对产 L-酪氨酸的谷氨酸棒杆菌 AROM3 进行改造,成功地从简单的氮源和可持续的碳源从头生产酪胺。芳香族-L-氨基酸脱羧酶(AADCs)的系统发育分析揭示了潜在的候选酶,可用于酪胺的脱羧作用。异源过表达相应的 AADC 基因导致成功生产酪胺,其中 AROM3 过表达短乳杆菌的酪氨酸脱羧酶基因时,获得了 1.9 g/L 的最高酪胺产量。对该生产酪胺的菌株进行进一步的代谢工程改造,使其能够利用替代碳源核糖和木糖来生产酪胺。此外,从木糖到 1.5 L 生物反应器分批发酵中稳定地上调了酪胺的生产规模,突出了可持续生产酪胺的潜力。要点:• 系统发育分析揭示了候选的 l-酪氨酸脱羧酶• 对谷氨酸棒杆菌进行了工程改造,用于从头生产酪胺• 实现了从替代碳源生产酪胺。