Suppr超能文献

通过代谢工程改造谷氨酸棒杆菌以利用葡萄糖和小麦秸秆水解物生产脂肪醇

Metabolic engineering of Corynebacterium glutamicum for fatty alcohol production from glucose and wheat straw hydrolysate.

作者信息

Werner Felix, Schwardmann Lynn S, Siebert Daniel, Rückert-Reed Christian, Kalinowski Jörn, Wirth Marie-Theres, Hofer Katharina, Takors Ralf, Wendisch Volker F, Blombach Bastian

机构信息

Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, 94315, Straubing, Germany.

Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany.

出版信息

Biotechnol Biofuels Bioprod. 2023 Jul 18;16(1):116. doi: 10.1186/s13068-023-02367-3.

Abstract

BACKGROUND

Fatty acid-derived products such as fatty alcohols (FAL) find growing application in cosmetic products, lubricants, or biofuels. So far, FAL are primarily produced petrochemically or through chemical conversion of bio-based feedstock. Besides the well-known negative environmental impact of using fossil resources, utilization of bio-based first-generation feedstock such as palm oil is known to contribute to the loss of habitat and biodiversity. Thus, the microbial production of industrially relevant chemicals such as FAL from second-generation feedstock is desirable.

RESULTS

To engineer Corynebacterium glutamicum for FAL production, we deregulated fatty acid biosynthesis by deleting the transcriptional regulator gene fasR, overexpressing a fatty acyl-CoA reductase (FAR) gene of Marinobacter hydrocarbonoclasticus VT8 and attenuating the native thioesterase expression by exchange of the ATG to a weaker TTG start codon. C. glutamicum ∆fasR cg2692 (pEKEx2-maqu2220) produced in shaking flasks 0.54 ± 0.02 g L from 20 g glucose L with a product yield of 0.054 ± 0.001 Cmol Cmol. To enable xylose utilization, we integrated xylA encoding the xylose isomerase from Xanthomonas campestris and xylB encoding the native xylulose kinase into the locus of actA. This approach enabled growth on xylose. However, adaptive laboratory evolution (ALE) was required to improve the growth rate threefold to 0.11 ± 0.00 h. The genome of the evolved strain C. glutamicum gX was re-sequenced, and the evolved genetic module was introduced into C. glutamicum ∆fasR cg2692 (pEKEx2-maqu2220) which allowed efficient growth and FAL production on wheat straw hydrolysate. FAL biosynthesis was further optimized by overexpression of the pntAB genes encoding the membrane-bound transhydrogenase of E. coli. The best-performing strain C. glutamicum ∆fasR cg2692 CgLP12::(P-pntAB-T) gX (pEKEx2-maqu2220) produced 2.45 ± 0.09 g L with a product yield of 0.054 ± 0.005 Cmol Cmol and a volumetric productivity of 0.109 ± 0.005 g L h in a pulsed fed-batch cultivation using wheat straw hydrolysate.

CONCLUSION

The combination of targeted metabolic engineering and ALE enabled efficient FAL production in C. glutamicum from wheat straw hydrolysate for the first time. Therefore, this study provides useful metabolic engineering principles to tailor this bacterium for other products from this second-generation feedstock.

摘要

背景

脂肪酸衍生产品,如脂肪醇(FAL),在化妆品、润滑剂或生物燃料中的应用日益广泛。到目前为止,FAL主要通过石油化学方法生产,或通过生物基原料的化学转化来生产。除了使用化石资源众所周知的负面环境影响外,利用生物基第一代原料(如棕榈油)已知会导致栖息地丧失和生物多样性减少。因此,利用第二代原料微生物生产工业相关化学品(如FAL)是可取的。

结果

为了对谷氨酸棒杆菌进行工程改造以生产FAL,我们通过删除转录调节基因fasR来解除脂肪酸生物合成的调控,过表达嗜油栖海杆菌VT8的脂肪酰辅酶A还原酶(FAR)基因,并通过将ATG替换为较弱的TTG起始密码子来减弱天然硫酯酶的表达。谷氨酸棒杆菌∆fasR cg2692(pEKEx2 - maqu2220)在摇瓶中以20 g/L葡萄糖生产了0.54±0.02 g/L的FAL,产物得率为0.054±0.001 Cmol/Cmol。为了实现木糖利用,我们将编码野油菜黄单胞菌木糖异构酶的xylA和编码天然木酮糖激酶的xylB整合到actA位点。这种方法使菌株能够在木糖上生长。然而,需要进行适应性实验室进化(ALE)将生长速率提高三倍至0.11±0.00 h⁻¹。对进化菌株谷氨酸棒杆菌gX的基因组进行重新测序,并将进化的遗传模块引入谷氨酸棒杆菌∆fasR cg2692(pEKEx2 - maqu2220),这使得该菌株能够在小麦秸秆水解物上高效生长并生产FAL。通过过表达编码大肠杆菌膜结合转氢酶的pntAB基因进一步优化FAL生物合成。性能最佳的菌株谷氨酸棒杆菌∆fasR cg2692 CgLP12::(P - pntAB - T) gX(pEKEx2 - maqu2220)在使用小麦秸秆水解物的脉冲补料分批培养中生产了2.45±0.09 g/L的FAL,产物得率为0.054±0.005 Cmol/Cmol,体积产率为0.109±0.005 g/L·h。

结论

靶向代谢工程和ALE的结合首次使谷氨酸棒杆菌能够从小麦秸秆水解物中高效生产FAL。因此,本研究提供了有用的代谢工程原理,可用于对该细菌进行改造以利用这种第二代原料生产其他产品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad20/10355004/98eeaf643d7b/13068_2023_2367_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验