Xia Qiancheng, Fu Qiuyu, Shen Cheng, Brenk Ruth, Huang Niu
Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
National Institute of Biological Sciences, Beijing, China.
J Comput Chem. 2025 Jan 5;46(1):e27516. doi: 10.1002/jcc.27516. Epub 2024 Oct 30.
Small molecule conformational sampling plays a pivotal role in molecular docking. Recent advancements have led to the emergence of various conformational sampling methods, each employing distinct algorithms. This study investigates the impact of different small molecule conformational sampling methods in molecular docking using UCSF DOCK 3.7. Specifically, six traditional sampling methods (Omega, BCL::Conf, CCDC Conformer Generator, ConfGenX, Conformator, RDKit ETKDGv3) and a deep learning-based model (Torsional Diffusion) for generating conformational ensembles are evaluated. These ensembles are subsequently docked against the Platinum Diverse Dataset, the PoseBusters dataset and the DUDE-Z dataset to assess binding pose reproducibility and screening power. Notably, different sampling methods exhibit varying performance due to their unique preferences, such as dihedral angle sampling ranges on rotatable bonds. Combining complementary methods may lead to further improvements in docking performance.
小分子构象采样在分子对接中起着关键作用。最近的进展导致了各种构象采样方法的出现,每种方法都采用了不同的算法。本研究使用UCSF DOCK 3.7研究了不同小分子构象采样方法在分子对接中的影响。具体而言,评估了六种传统采样方法(Omega、BCL::Conf、CCDC构象生成器、ConfGenX、Conformator、RDKit ETKDGv3)和一种基于深度学习的用于生成构象集的模型(扭转扩散)。随后将这些构象集与铂多样数据集、PoseBusters数据集和DUDE-Z数据集进行对接,以评估结合姿势再现性和筛选能力。值得注意的是,由于其独特的偏好,如可旋转键上的二面角采样范围,不同的采样方法表现出不同的性能。结合互补方法可能会进一步提高对接性能。