Lehrer M A, Govindarajulu R, Smith F, Hawkins J S
West Virginia University, Morgantown, West Virginia, USA.
University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Plant Biol (Stuttg). 2025 Jan;27(1):125-133. doi: 10.1111/plb.13733. Epub 2024 Oct 30.
Drought stress severely impedes plant growth, development, and yield. Therefore, it is critical to uncover the genetic mechanisms underlying drought resistance to ensure future food security. To identify the genetic controls of these responses in Sorghum, an agriculturally and economically important grain crop, an interspecific recombinant inbred line (RIL) population was established by crossing a domesticated inbred line of Sorghum bicolor (TX7000) with its wild relative, Sorghum propinquum. This RIL population was evaluated under drought conditions, allowing for the identification of quantitative trait loci (QTL) that contribute to drought resistance. We detected eight QTL in the drought population that explain a significant portion of the observed variation for four traits (height, aboveground biomass, relative water content, and leaf temperature/transpiration). The allelic effects of, and the candidate genes within, these QTL emphasize: (1) the influence of domestication on drought-responsive phenotypes, such as height and aboveground biomass, and (2) how control of water uptake and/or loss can be driven by species-specific plant architecture. Our findings shed light on the interconnected roles of shoot and root responses in drought resistance as it relates to regulation of water uptake and/or loss, while the detected allelic effects demonstrate how maintenance of grain production and yield under drought is a likely result of domestication-derived drought tolerance.
干旱胁迫严重阻碍植物的生长、发育和产量。因此,揭示抗旱的遗传机制对于确保未来粮食安全至关重要。为了确定高粱(一种在农业和经济上都很重要的谷类作物)中这些反应的遗传控制,通过将栽培的双色高粱自交系(TX7000)与其野生近缘种拟高粱杂交,建立了一个种间重组自交系(RIL)群体。对这个RIL群体在干旱条件下进行评估,从而鉴定出有助于抗旱的数量性状位点(QTL)。我们在干旱群体中检测到8个QTL,这些QTL解释了观察到的四个性状(株高、地上生物量、相对含水量和叶片温度/蒸腾作用)变异的很大一部分。这些QTL的等位基因效应以及其中的候选基因强调了:(1)驯化对干旱响应表型(如株高和地上生物量)的影响,以及(2)物种特异性的植物结构如何驱动对水分吸收和/或损失的控制。我们的研究结果揭示了地上部和根部反应在抗旱中与水分吸收和/或损失调节相关的相互联系的作用,而检测到的等位基因效应表明,干旱条件下维持谷物产量是驯化衍生的耐旱性的可能结果。