Suppr超能文献

香蕉皮灰与甘蔗渣混合地质聚合物混凝土力学性能的人工智能预测

Artificial intelligence prediction of the mechanical properties of banana peel-ash and bagasse blended geopolymer concrete.

作者信息

Alaneme George Uwadiegwu, Olonade Kolawole Adisa, Esenogho Ebenezer, Lawan Mustapha Muhammad, Dintwa Edward

机构信息

Civil Engineering Department, Kampala International University, Kampala, Uganda.

Civil and Environmental Engineering Department, University of Lagos, Lagos, Nigeria.

出版信息

Sci Rep. 2024 Oct 30;14(1):26151. doi: 10.1038/s41598-024-77144-9.

Abstract

This research explores the application of Artificial Intelligence (AI) techniques to assess the mechanical properties of geopolymer concrete made from a blend of Banana Peel-Ash (BPA) and Sugarcane Bagasse Ash (SCBA), using a sodium silicate (NaSiO) to sodium hydroxide (NaOH) ratio ranging from 1.5 to 3. Utilizing three AI methodologies-Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP)-the study aims to enhance prediction accuracy for the mechanical properties of geopolymer concrete based on 104 datasets. By optimizing mix designs through varying proportions of BPA and SCBA, alkaline activator molarity, and aggregate-to-binder ratios, the research identified combinations that significantly enhance mechanical properties, demonstrating notable international relevance as it contributes to global efforts in sustainable construction by effectively utilizing industrial by-products. The experimental results demonstrated that increasing the molarity of the alkaline activator from 4 to 10 M significantly enhanced both the compressive and flexural strengths of the geopolymer concrete. Specifically, a mixture containing 52.5% SCBA and 47.5% BPA at a 10 M molarity achieved a maximum compressive strength of 33.17 MPa after 20 h of curing. In contrast, a mixture composed of 95% SCBA and 5% BPA at a 4 M molarity exhibited a substantially lower compressive strength of only 21.27 MPa. Additionally, the highest recorded flexural strength of 9.95 MPa (77.25% SCBA and 22.5 BPA) was observed at the 10 M molarity, while the flexural strength at 4 M was lowest, at 4.12 MPa (95% SCBA and 5% BPA). Microstructural analysis through Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (ED-SEM) revealed insights into the pore structure and elemental composition of the concrete, while Thermogravimetric Analysis (TGA) provided data on the material's thermal stability and decomposition characteristics. Performance analysis of the AI models showed that the ANN model had an average MSE of 1.338, RMSE of 1.157, MAE of 3.104, and R of 0.989, while the ANFIS model outperformed with an MSE of 0.345, RMSE of 0.587, MAE of 1.409, and R of 0.998. The GEP model demonstrated an MSE of 1.233, RMSE of 1.110, MAE of 1.828, and R of 0.992, confirming that ANFIS is the most accurate model for predicting the mechanical and rheological properties of geopolymer concrete. This study highlights the potential of integrating AI with experimental data to optimize the formulation and performance of geopolymer concrete, advancing sustainable construction practices by effectively utilizing industrial by-products.

摘要

本研究探讨了人工智能(AI)技术在评估由香蕉皮灰(BPA)和甘蔗渣灰(SCBA)混合制成的地质聚合物混凝土力学性能方面的应用,硅酸钠(NaSiO)与氢氧化钠(NaOH)的比例范围为1.5至3。该研究利用三种人工智能方法——人工神经网络(ANN)、自适应神经模糊推理系统(ANFIS)和基因表达式编程(GEP),旨在基于104个数据集提高地质聚合物混凝土力学性能的预测准确性。通过改变BPA和SCBA的比例、碱性活化剂摩尔浓度以及集料与胶凝材料的比例来优化配合比设计,该研究确定了能显著提高力学性能的组合,因其通过有效利用工业副产品为全球可持续建设做出贡献,具有显著的国际相关性。实验结果表明,将碱性活化剂的摩尔浓度从4M提高到10M可显著提高地质聚合物混凝土的抗压强度和抗弯强度。具体而言,在10M摩尔浓度下,含有52.5%SCBA和47.5%BPA的混合物在养护20小时后达到了33.17MPa的最大抗压强度。相比之下,在4M摩尔浓度下由95%SCBA和5%BPA组成的混合物的抗压强度则低得多,仅为21.27MPa。此外,在10M摩尔浓度下观察到的最高抗弯强度为9.95MPa(77.25%SCBA和22.5%BPA),而在4M时抗弯强度最低,为4.12MPa(95%SCBA和5%BPA)。通过扫描电子显微镜结合能谱仪(ED-SEM)进行的微观结构分析揭示了混凝土的孔隙结构和元素组成,而热重分析(TGA)提供了材料热稳定性和分解特性的数据。人工智能模型的性能分析表明,ANN模型的平均均方误差(MSE)为1.338,均方根误差(RMSE)为1.157,平均绝对误差(MAE)为3.104,相关系数(R)为0.989,而ANFIS模型表现更优,MSE为0.345,RMSE为0.587,MAE为1.409,R为0.998。GEP模型的MSE为1.233,RMSE为1.110,MAE为1.828,R为0.992,证实了ANFIS是预测地质聚合物混凝土力学和流变性能最准确的模型。本研究强调了将人工智能与实验数据相结合以优化地质聚合物混凝土配方和性能的潜力,通过有效利用工业副产品推动可持续建设实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41d6/11525978/093d2aaf7180/41598_2024_77144_Fig1_HTML.jpg

相似文献

2
Experimental Investigation of NaOH and KOH Mixture in SCBA-Based Geopolymer Cement Composite.
Materials (Basel). 2020 Aug 4;13(15):3437. doi: 10.3390/ma13153437.
4
Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete.
Materials (Basel). 2019 Mar 25;12(6):983. doi: 10.3390/ma12060983.
6
Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete.
PLoS One. 2022 May 25;17(5):e0265846. doi: 10.1371/journal.pone.0265846. eCollection 2022.
9
Influence of alkaline activators on mechanical properties of environmentally friendly geopolymer concrete under different curing regimes.
Environ Sci Pollut Res Int. 2024 Oct;31(50):60619-60639. doi: 10.1007/s11356-024-35232-3. Epub 2024 Oct 10.
10
A comprehensive study on engineering and sustainability characteristics with emphasizing on 3R's approach in building construction.
Heliyon. 2024 Jun 2;10(11):e32206. doi: 10.1016/j.heliyon.2024.e32206. eCollection 2024 Jun 15.

引用本文的文献

本文引用的文献

1
Proposed simplified methodological approach for designing geopolymer concrete mixtures.
Sci Rep. 2024 Jul 2;14(1):15191. doi: 10.1038/s41598-024-66093-y.
3
Optimization of cassava peel ash concrete using central composite design method.
Sci Rep. 2024 Apr 4;14(1):7901. doi: 10.1038/s41598-024-58555-0.
6
Effects of elevated temperatures on the mechanical properties of laterized concrete.
Sci Rep. 2023 Oct 26;13(1):18358. doi: 10.1038/s41598-023-45591-5.
7
Study of flexural strength of concrete containing mineral admixtures based on machine learning.
Sci Rep. 2023 Oct 23;13(1):18061. doi: 10.1038/s41598-023-45522-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验