Alaneme George Uwadiegwu, Olonade Kolawole Adisa, Esenogho Ebenezer, Lawan Mustapha Muhammad, Dintwa Edward
Civil Engineering Department, Kampala International University, Kampala, Uganda.
Civil and Environmental Engineering Department, University of Lagos, Lagos, Nigeria.
Sci Rep. 2024 Oct 30;14(1):26151. doi: 10.1038/s41598-024-77144-9.
This research explores the application of Artificial Intelligence (AI) techniques to assess the mechanical properties of geopolymer concrete made from a blend of Banana Peel-Ash (BPA) and Sugarcane Bagasse Ash (SCBA), using a sodium silicate (NaSiO) to sodium hydroxide (NaOH) ratio ranging from 1.5 to 3. Utilizing three AI methodologies-Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP)-the study aims to enhance prediction accuracy for the mechanical properties of geopolymer concrete based on 104 datasets. By optimizing mix designs through varying proportions of BPA and SCBA, alkaline activator molarity, and aggregate-to-binder ratios, the research identified combinations that significantly enhance mechanical properties, demonstrating notable international relevance as it contributes to global efforts in sustainable construction by effectively utilizing industrial by-products. The experimental results demonstrated that increasing the molarity of the alkaline activator from 4 to 10 M significantly enhanced both the compressive and flexural strengths of the geopolymer concrete. Specifically, a mixture containing 52.5% SCBA and 47.5% BPA at a 10 M molarity achieved a maximum compressive strength of 33.17 MPa after 20 h of curing. In contrast, a mixture composed of 95% SCBA and 5% BPA at a 4 M molarity exhibited a substantially lower compressive strength of only 21.27 MPa. Additionally, the highest recorded flexural strength of 9.95 MPa (77.25% SCBA and 22.5 BPA) was observed at the 10 M molarity, while the flexural strength at 4 M was lowest, at 4.12 MPa (95% SCBA and 5% BPA). Microstructural analysis through Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (ED-SEM) revealed insights into the pore structure and elemental composition of the concrete, while Thermogravimetric Analysis (TGA) provided data on the material's thermal stability and decomposition characteristics. Performance analysis of the AI models showed that the ANN model had an average MSE of 1.338, RMSE of 1.157, MAE of 3.104, and R of 0.989, while the ANFIS model outperformed with an MSE of 0.345, RMSE of 0.587, MAE of 1.409, and R of 0.998. The GEP model demonstrated an MSE of 1.233, RMSE of 1.110, MAE of 1.828, and R of 0.992, confirming that ANFIS is the most accurate model for predicting the mechanical and rheological properties of geopolymer concrete. This study highlights the potential of integrating AI with experimental data to optimize the formulation and performance of geopolymer concrete, advancing sustainable construction practices by effectively utilizing industrial by-products.
本研究探讨了人工智能(AI)技术在评估由香蕉皮灰(BPA)和甘蔗渣灰(SCBA)混合制成的地质聚合物混凝土力学性能方面的应用,硅酸钠(NaSiO)与氢氧化钠(NaOH)的比例范围为1.5至3。该研究利用三种人工智能方法——人工神经网络(ANN)、自适应神经模糊推理系统(ANFIS)和基因表达式编程(GEP),旨在基于104个数据集提高地质聚合物混凝土力学性能的预测准确性。通过改变BPA和SCBA的比例、碱性活化剂摩尔浓度以及集料与胶凝材料的比例来优化配合比设计,该研究确定了能显著提高力学性能的组合,因其通过有效利用工业副产品为全球可持续建设做出贡献,具有显著的国际相关性。实验结果表明,将碱性活化剂的摩尔浓度从4M提高到10M可显著提高地质聚合物混凝土的抗压强度和抗弯强度。具体而言,在10M摩尔浓度下,含有52.5%SCBA和47.5%BPA的混合物在养护20小时后达到了33.17MPa的最大抗压强度。相比之下,在4M摩尔浓度下由95%SCBA和5%BPA组成的混合物的抗压强度则低得多,仅为21.27MPa。此外,在10M摩尔浓度下观察到的最高抗弯强度为9.95MPa(77.25%SCBA和22.5%BPA),而在4M时抗弯强度最低,为4.12MPa(95%SCBA和5%BPA)。通过扫描电子显微镜结合能谱仪(ED-SEM)进行的微观结构分析揭示了混凝土的孔隙结构和元素组成,而热重分析(TGA)提供了材料热稳定性和分解特性的数据。人工智能模型的性能分析表明,ANN模型的平均均方误差(MSE)为1.338,均方根误差(RMSE)为1.157,平均绝对误差(MAE)为3.104,相关系数(R)为0.989,而ANFIS模型表现更优,MSE为0.345,RMSE为0.587,MAE为1.409,R为0.998。GEP模型的MSE为1.233,RMSE为1.110,MAE为1.828,R为0.992,证实了ANFIS是预测地质聚合物混凝土力学和流变性能最准确的模型。本研究强调了将人工智能与实验数据相结合以优化地质聚合物混凝土配方和性能的潜力,通过有效利用工业副产品推动可持续建设实践。