Suppr超能文献

天然橡胶乳胶改性混凝土力学性能的自适应神经模糊推理系统优化

Adaptive neuro-fuzzy inference system optimization of natural rubber latex modified concrete's mechanical Properties.

作者信息

Nyah Efiok Etim, Onwuka David Ogbonna, Arimanwa Joan Ijeoma, Alaneme George Uwadiegwu, Nakkeeran G, Onwuka Ulari Sylvia, Okere Chinenye Elizabeth

机构信息

Department of Civil Engineering, University of Cross River State, Calabar, Nigeria.

Department of Civil Engineering, Federal University of Technology Owerri, Imo State, Owerri, Nigeria.

出版信息

Sci Rep. 2025 Jul 1;15(1):20624. doi: 10.1038/s41598-025-05852-x.

Abstract

The study investigates the optimization of Natural Rubber Latex Modified Concrete (NRLMC) using an Adaptive Neuro-Fuzzy Inference System (ANFIS) to enhance predictive accuracy and material performance. Traditional laboratory testing for concrete properties is often time-consuming, costly, and prone to variability due to environmental and procedural inconsistencies. Machine learning techniques, such as ANFIS, offer a robust alternative by effectively modelling complex, nonlinear relationships in material behavior based on experimental data. In this study, laboratory experiments were conducted to examine the effects of varying Natural Rubber Latex (NRL) and calcium sulfate (CaSO) content on NRLMC's mechanical properties. These results served as the foundation for developing an ANFIS model in MATLAB, which demonstrated high accuracy in predicting key concrete properties. The optimal mix was identified as 10% NRL and 2% CaSO, yielding a compressive strength of 44.27 MPa and a static modulus of elasticity of 34.20 GPa. Additionally, a Poisson's ratio of 0.311, modulus of rigidity of 21.62 GPa, and shear strength of 10.78 MPa were observed at 9% NRL and 1.8% CaSO, with strength reductions occurring beyond these thresholds. Microstructural analysis via SEM, EDS, and FTIR confirmed the effective integration of NRL into the cement matrix, enhancing density and uniformity. The ANFIS model exhibited strong predictive performance, with a root mean square error (RMSE) of 1.5434, mean absolute percentage error (MAPE) of 2.89%, and R of 0.9795 for the modulus of elasticity. For Poisson's ratio, RMSE was 0.7979, MAPE was 2.25%, and R was 0.9834. Similarly, shear modulus yielded an RMSE of 1.7208, MAPE of 2.74%, and R of 0.9692, while shear strength had an RMSE of 1.884, MAPE of 2.93%, and R of 0.9569. These results validate ANFIS as a reliable tool for accurately predicting concrete properties, reducing the need for extensive experimental trials. Furthermore, SHAP analysis highlights that OPC (%) and NRL (%) play dominant roles in influencing Ec (GPa) and shear strength (MPa), whereas CaSO (%) significantly impacts the Poisson's ratio and shear modulus (GPa). This study highlights the potential of NRLMC as a sustainable, high-performance material and demonstrates the efficacy of intelligent modeling for material optimization. By integrating machine learning with experimental data, this research advances the development of environmentally friendly and durable concrete, offering a scalable solution for future construction practices.

摘要

本研究利用自适应神经模糊推理系统(ANFIS)对天然橡胶乳胶改性混凝土(NRLMC)进行优化,以提高预测精度和材料性能。传统的混凝土性能实验室测试通常耗时、成本高,并且由于环境和程序不一致而容易产生变异性。机器学习技术,如ANFIS,通过基于实验数据有效地对材料行为中的复杂非线性关系进行建模,提供了一种强大的替代方法。在本研究中,进行了实验室实验,以研究不同天然橡胶乳胶(NRL)和硫酸钙(CaSO)含量对NRLMC力学性能的影响。这些结果为在MATLAB中开发ANFIS模型奠定了基础,该模型在预测关键混凝土性能方面表现出高精度。确定的最佳配合比为10%NRL和2%CaSO,抗压强度为44.27MPa,静态弹性模量为34.20GPa。此外,在9%NRL和1.8%CaSO时,泊松比为0.311,刚性模量为21.62GPa,抗剪强度为10.78MPa,超过这些阈值时强度会降低。通过扫描电子显微镜(SEM)、能谱仪(EDS)和傅里叶变换红外光谱(FTIR)进行的微观结构分析证实了NRL有效地融入了水泥基体,提高了密度和均匀性。ANFIS模型表现出强大的预测性能,弹性模量的均方根误差(RMSE)为1.5434,平均绝对百分比误差(MAPE)为2.89%,相关系数(R)为0.9795。对于泊松比,RMSE为0.7979,MAPE为2.25%,R为0.9834。同样,剪切模量的RMSE为1.7208,MAPE为2.74%,R为0.9692,而抗剪强度的RMSE为1.884,MAPE为2.93%,R为0.9569。这些结果验证了ANFIS作为准确预测混凝土性能的可靠工具,减少了大量实验试验的需求。此外,SHAP分析突出表明,普通硅酸盐水泥(OPC)(%)和NRL(%)在影响弹性模量Ec(GPa)和抗剪强度(MPa)方面起主导作用,而CaSO(%)对泊松比和剪切模量(GPa)有显著影响。本研究突出了NRLMC作为一种可持续的高性能材料的潜力,并证明了智能建模用于材料优化的有效性。通过将机器学习与实验数据相结合,本研究推动了环保耐用混凝土的发展,为未来的建筑实践提供了一种可扩展的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fa9/12218361/89a9564e3f4c/41598_2025_5852_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验