Medical Physics Unit, McGill University, Montreal, QC, Canada.
Department of Radiation Oncology, McGill University Health Center (MUHC), Montreal, QC, Canada.
Sci Rep. 2022 Jun 14;12(1):9866. doi: 10.1038/s41598-022-13379-8.
Radiomics-based machine learning classifiers have shown potential for detecting bone metastases (BM) and for evaluating BM response to radiotherapy (RT). However, current radiomics models require large datasets of images with expert-segmented 3D regions of interest (ROIs). Full ROI segmentation is time consuming and oncologists often outline just RT treatment fields in clinical practice. This presents a challenge for real-world radiomics research. As such, a method that simplifies BM identification but does not compromise the power of radiomics is needed. The objective of this study was to investigate the feasibility of radiomics models for BM detection using lesion-center-based geometric ROIs. The planning-CT images of 170 patients with non-metastatic lung cancer and 189 patients with spinal BM were used. The point locations of 631 BM and 674 healthy bone (HB) regions were identified by experts. ROIs with various geometric shapes were centered and automatically delineated on the identified locations, and 107 radiomics features were extracted. Various feature selection methods and machine learning classifiers were evaluated. Our point-based radiomics pipeline was successful in differentiating BM from HB. Lesion-center-based segmentation approach greatly simplifies the process of preparing images for use in radiomics studies and avoids the bottleneck of full ROI segmentation.
基于放射组学的机器学习分类器已显示出用于检测骨转移 (BM) 和评估 BM 对放射治疗 (RT) 反应的潜力。然而,目前的放射组学模型需要具有专家分割的 3D 感兴趣区域 (ROI) 的大型图像数据集。完整的 ROI 分割耗时,并且肿瘤学家在临床实践中通常仅勾勒出 RT 治疗区域。这对实际的放射组学研究提出了挑战。因此,需要一种简化 BM 识别但不影响放射组学功能的方法。本研究的目的是研究使用基于病变中心的几何 ROI 进行 BM 检测的放射组学模型的可行性。使用了 170 名非转移性肺癌患者和 189 名脊柱 BM 患者的计划 CT 图像。专家确定了 631 个 BM 和 674 个健康骨 (HB) 区域的点位置。在识别的位置上以各种形状的 ROI 为中心并自动进行勾画,并提取了 107 个放射组学特征。评估了各种特征选择方法和机器学习分类器。我们基于点的放射组学管道成功地区分了 BM 和 HB。基于病变中心的分割方法极大地简化了为放射组学研究准备图像的过程,并避免了完整 ROI 分割的瓶颈。