二维和三维空间中的肿瘤进化和微环境相互作用。

Tumour evolution and microenvironment interactions in 2D and 3D space.

机构信息

Department of Medicine, Washington University in St Louis, St Louis, MO, USA.

McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA.

出版信息

Nature. 2024 Oct;634(8036):1178-1186. doi: 10.1038/s41586-024-08087-4. Epub 2024 Oct 30.

Abstract

To study the spatial interactions among cancer and non-cancer cells, we here examined a cohort of 131 tumour sections from 78 cases across 6 cancer types by Visium spatial transcriptomics (ST). This was combined with 48 matched single-nucleus RNA sequencing samples and 22 matched co-detection by indexing (CODEX) samples. To describe tumour structures and habitats, we defined 'tumour microregions' as spatially distinct cancer cell clusters separated by stromal components. They varied in size and density among cancer types, with the largest microregions observed in metastatic samples. We further grouped microregions with shared genetic alterations into 'spatial subclones'. Thirty five tumour sections exhibited subclonal structures. Spatial subclones with distinct copy number variations and mutations displayed differential oncogenic activities. We identified increased metabolic activity at the centre and increased antigen presentation along the leading edges of microregions. We also observed variable T cell infiltrations within microregions and macrophages predominantly residing at tumour boundaries. We reconstructed 3D tumour structures by co-registering 48 serial ST sections from 16 samples, which provided insights into the spatial organization and heterogeneity of tumours. Additionally, using an unsupervised deep-learning algorithm and integrating ST and CODEX data, we identified both immune hot and cold neighbourhoods and enhanced immune exhaustion markers surrounding the 3D subclones. These findings contribute to the understanding of spatial tumour evolution through interactions with the local microenvironment in 2D and 3D space, providing valuable insights into tumour biology.

摘要

为了研究癌症和非癌细胞之间的空间相互作用,我们通过 Visium 空间转录组学(ST)检查了来自 6 种癌症类型的 78 例病例的 131 个肿瘤切片。这与 48 个匹配的单核 RNA 测序样本和 22 个匹配的索引(CODEX)样本相结合。为了描述肿瘤结构和栖息地,我们将“肿瘤微区”定义为空间上不同的癌细胞簇,由基质成分分隔。它们在癌症类型之间的大小和密度上有所不同,在转移性样本中观察到最大的微区。我们进一步将具有共享遗传改变的微区分组为“空间亚克隆”。35 个肿瘤切片表现出亚克隆结构。具有不同拷贝数变异和突变的空间亚克隆表现出不同的致癌活性。我们发现中心的代谢活性增加,微区前缘的抗原呈递增加。我们还观察到微区内 T 细胞浸润的可变性以及主要位于肿瘤边界的巨噬细胞。我们通过对来自 16 个样本的 48 个连续 ST 切片进行共配准,重建了 3D 肿瘤结构,这为肿瘤的空间组织和异质性提供了深入了解。此外,我们使用无监督深度学习算法并整合 ST 和 CODEX 数据,鉴定了 3D 亚克隆周围的免疫热点和冷点以及增强的免疫耗竭标志物。这些发现有助于通过在 2D 和 3D 空间中与局部微环境相互作用来理解空间肿瘤进化,为肿瘤生物学提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea2/11525187/e71f87f52375/41586_2024_8087_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索