Chen Hai, Shu Jingmin, Mudappathi Rekha, Li Elaine, Wang Panwen, Bergsagel Leif, Yang Ping, Sun Zhifu, Zhao Logan, Shi Changxin, Townsend Jeffrey P, Maley Carlo, Liu Li
College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA.
bioRxiv. 2025 Jun 3:2025.05.31.657191. doi: 10.1101/2025.05.31.657191.
Intratumor heterogeneity arises from ongoing somatic evolution complicating cancer diagnosis, prognosis, and treatment. Here we present TEATIME (esimating volutionry events hrough sngle-tiepoint squencing), a novel computational framework that models tumors as mixtures of two competing cell populations: an ancestral clone with baseline fitness and a derived subclone with elevated fitness. Using cross-sectional bulk sequencing data, TEATIME estimates mutation rates, timing of subclone emergence, relative fitness, and number of generations of growth. To quantify intratumor fitness asymmetries, we introduce a novel metric-fitness diversity-which captures the imbalance between competing cell populations and serves as a measure of functional intratumor heterogeneity. Applying TEATIME to 33 tumor types from The Cancer Genome Atlas, we revealed divergent as well as convergent evolutionary patterns. Notably, we found that immune-hot microenvironments constraint subclonal expansion and limit fitness diversity. Moreover, we detected temporal dependencies in mutation acquisition, where early driver mutations in ancestral clones epistatically shape the fitness landscape, predisposing specific subclones to selective advantages. These findings underscore the importance of intratumor competition and tumor-microenvironment interactions in shaping evolutionary trajectories, driving intratumor heterogeneity. Lastly, we demonstrate that TEATIME-derived evolutionary parameters and fitness diversity offer novel prognostic insights across multiple cancer types.
肿瘤内异质性源于持续的体细胞进化,这使得癌症诊断、预后和治疗变得复杂。在此,我们展示了TEATIME(通过单时间点测序估计进化事件),这是一种新颖的计算框架,它将肿瘤建模为两个相互竞争的细胞群体的混合物:一个具有基线适应性的祖先克隆和一个具有更高适应性的衍生亚克隆。利用横断面批量测序数据,TEATIME估计突变率、亚克隆出现的时间、相对适应性以及生长代数。为了量化肿瘤内适应性不对称性,我们引入了一种新的指标——适应性多样性,它捕捉了相互竞争的细胞群体之间的不平衡,并作为功能性肿瘤内异质性的一种度量。将TEATIME应用于来自癌症基因组图谱的33种肿瘤类型,我们揭示了不同的以及趋同的进化模式。值得注意的是,我们发现免疫活跃的微环境会限制亚克隆扩张并限制适应性多样性。此外,我们检测到了突变获得中的时间依赖性,其中祖先克隆中的早期驱动突变上位性地塑造了适应性景观,使特定亚克隆具有选择优势。这些发现强调了肿瘤内竞争和肿瘤-微环境相互作用在塑造进化轨迹、驱动肿瘤内异质性方面的重要性。最后,我们证明TEATIME衍生的进化参数和适应性多样性为多种癌症类型提供了新的预后见解。