Suppr超能文献

基于基本生理指标的实时脓毒症预测可解释机器学习模型。

An interpretable machine learning model for real-time sepsis prediction based on basic physiological indicators.

机构信息

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.

出版信息

Eur Rev Med Pharmacol Sci. 2023 May;27(10):4348-4356. doi: 10.26355/eurrev_202305_32439.

Abstract

OBJECTIVE

In view of the important role of risk prediction models in the clinical diagnosis and treatment of sepsis, and the limitations of existing models in terms of timeliness and interpretability, we intend to develop a real-time prediction model of sepsis with high timeliness and clinical interpretability.

PATIENTS AND METHODS

We used eight real-time basic physiological monitoring indicators of patients, including heart rate, respiratory rate, oxygen saturation, mean arterial pressure, systolic blood pressure, diastolic blood pressure, temperature and blood glucose, extracted three-hour dynamic feature sequences, and calculated 3 linear parameters (mean, standard deviation, and endpoint value), a 24-dimensional feature vector was constructed, and finally a real-time sepsis prediction model was constructed based on the Local Interpretable Model-Agnostic Explanation (LIME) interpretability method.

RESULTS

The area under the receiver operating characteristic curve (AUROC), Accuracy and F1 scores of Extremely Randomized Trees we built were higher than those of other models, with AUROC above 0.76, showing the best performance. The Imbalance XGBoost has a high specificity (0.86) in predicting sepsis. The LIME local interpretable model we built can display a large amount of valid model prediction details for clinical workers' reference, including the prediction probability and the influence of each feature on the prediction result, thus effectively assisting the work of clinical workers and improving diagnostic efficiency.

CONCLUSIONS

This model can provide real-time dynamic early warning of sepsis for critically ill patients under supervision and provide a reference for clinical decision support. At the same time, interpretive analysis of sepsis prediction models can improve the credibility of the models.

摘要

目的

鉴于风险预测模型在脓毒症的临床诊断和治疗中的重要作用,以及现有模型在及时性和可解释性方面的局限性,我们旨在开发一种具有高及时性和临床可解释性的实时脓毒症预测模型。

患者和方法

我们使用了 8 个患者实时基本生理监测指标,包括心率、呼吸频率、氧饱和度、平均动脉压、收缩压、舒张压、体温和血糖,提取了三小时动态特征序列,并计算了 3 个线性参数(均值、标准差和终点值),构建了一个 24 维特征向量,最后基于局部可解释模型不可知解释(LIME)可解释性方法构建了一个实时脓毒症预测模型。

结果

我们构建的极端随机树的接收者操作特征曲线下面积(AUROC)、准确率和 F1 评分均高于其他模型,AUROC 高于 0.76,表现出最佳性能。不平衡 XGBoost 在预测脓毒症方面具有较高的特异性(0.86)。我们构建的 LIME 局部可解释模型可以为临床工作者提供大量有效的模型预测细节,包括预测概率和每个特征对预测结果的影响,从而有效辅助临床工作者的工作,提高诊断效率。

结论

该模型可以为监护下的危重症患者提供脓毒症实时动态预警,为临床决策支持提供参考。同时,脓毒症预测模型的解释性分析可以提高模型的可信度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验