Suppr超能文献

在第一人称群体行为任务中对人类导航与决策动态进行建模。

Modelling human navigation and decision dynamics in a first-person herding task.

作者信息

Bin Kamruddin Ayman, Sandison Hannah, Patil Gaurav, Musolesi Mirco, di Bernardo Mario, Richardson Michael J

机构信息

Modeling and Engineering Risk and Complexity, Scuola Superiore Meridionale, Naples, Italy.

Department of Electrical Engineering and ICT, University of Naples Federico II, Naples, Italy.

出版信息

R Soc Open Sci. 2024 Oct 30;11(10):231919. doi: 10.1098/rsos.231919. eCollection 2024 Oct.

Abstract

This study investigated whether dynamical perceptual-motor primitives (DPMPs) could also be used to capture human navigation in a first-person herding task. To achieve this aim, human participants played a first-person herding game, in which they were required to corral virtual cows, called targets, into a specified containment zone. In addition to recording and modelling participants' movement trajectories during gameplay, participants' target-selection decisions (i.e. the order in which participants corralled targets) were recorded and modelled. The results revealed that a simple DPMP navigation model could effectively reproduce the movement trajectories of participants and that almost 80% of the participants' target-selection decisions could be captured by a simple heuristic policy. Importantly, when this policy was coupled to the DPMP navigation model, the resulting system could successfully simulate and predict the behavioural dynamics (movement trajectories and target-selection decisions) of participants in novel multi-target contexts. Implications of the findings for understanding complex human perceptual-motor behaviour and the development of artificial agents for robust human-machine interaction are discussed.

摘要

本研究调查了动态感知-运动基元(DPMPs)是否也可用于在第一人称放牧任务中捕捉人类导航。为实现这一目标,人类参与者玩了一款第一人称放牧游戏,在游戏中他们需要将虚拟奶牛(称为目标)赶进指定的围控区域。除了记录和建模参与者在游戏过程中的运动轨迹外,还记录和建模了参与者的目标选择决策(即参与者驱赶目标的顺序)。结果表明,一个简单的DPMP导航模型可以有效地重现参与者的运动轨迹,并且几乎80%的参与者目标选择决策可以通过一个简单的启发式策略来捕捉。重要的是,当这个策略与DPMP导航模型相结合时,生成的系统可以成功地模拟和预测参与者在新颖的多目标情境中的行为动态(运动轨迹和目标选择决策)。讨论了这些发现对于理解复杂人类感知-运动行为以及开发用于稳健人机交互的智能体的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c146/11522880/fbec3a6ae3e0/rsos.231919.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验