Suppr超能文献

机器学习算法预测初次髋关节镜手术的阿片类药物初治患者的阿片类药物使用时间延长。

Machine Learning Algorithms Predict Prolonged Opioid Use in Opioid-Naïve Primary Hip Arthroscopy Patients.

机构信息

From the Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY (Dr. Kunze); and the Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL (Mr. Polce, Mr. Alter, and Dr. Nho).

出版信息

J Am Acad Orthop Surg Glob Res Rev. 2021 May 25;5(5):e21.00093-8. doi: 10.5435/JAAOSGlobal-D-21-00093.

Abstract

INTRODUCTION

Excessive opioid use after orthopaedic surgery procedures remains a concern because it may result in increased morbidity and imposes a financial burden on the healthcare system. The purpose of this study was to develop machine learning algorithms to predict prolonged opioid use after hip arthroscopy in opioid-naïve patients.

METHODS

A registry of consecutive hip arthroscopy patients treated by a single fellowship-trained surgeon at one large academic and three community hospitals between January 2012 and January 2017 was queried. All patients were opioid-naïve and therefore had no history of opioid use before surgery. The primary outcome was prolonged postoperative opioid use, defined as patients who requested one or more opioid prescription refills postoperatively. Recursive feature elimination was used to identify the combination of variables that optimized model performance from an initial pool of 17 preoperative features. Five machine learning algorithms (stochastic gradient boosting, random forest, support vector machine, neural network, and elastic-net penalized logistic regression) were trained using 10-fold cross-validation five times and applied to an independent testing set of patients. These algorithms were assessed by calibration, discrimination, Brier score, and decision curve analysis.

RESULTS

A total of 775 patients were included, with 141 (18.2%) requesting and using one or more opioid refills after primary hip arthroscopy. The stochastic gradient boosting model achieved the best performance (c-statistic: 0.75, calibration intercept: -0.02, calibration slope: 0.88, and Brier score: 0.13). The five most important variables in predicting prolonged opioid use were the preoperative modified ones: Harris hip score, age, BMI, preoperative pain level, and worker's compensation status. The final algorithm was incorporated into an open-access web application available here: https://orthoapps.shinyapps.io/HPRG_OpioidUse/.

CONCLUSIONS

Machine learning algorithms demonstrated good performance for predicting prolonged opioid use after hip arthroscopy in opioid-naïve patients. External validation of this algorithm is necessary to confirm the predictive ability and performance before use in clinical settings.

摘要

简介

骨科手术后过度使用阿片类药物仍然令人担忧,因为它可能导致发病率增加,并给医疗保健系统带来经济负担。本研究的目的是开发机器学习算法来预测在接受过单一 fellowship培训的外科医生治疗的接受髋关节镜检查的阿片类药物初治患者中,术后延长使用阿片类药物的情况。

方法

查询了一家大型学术和三家社区医院的一位单一 fellowship培训的外科医生在 2012 年 1 月至 2017 年 1 月期间治疗的连续髋关节镜检查患者的注册表。所有患者均为阿片类药物初治患者,因此在手术前均无阿片类药物使用史。主要结局是术后延长使用阿片类药物,定义为患者术后要求开具一种或多种阿片类药物处方。递归特征消除用于从初始的 17 个术前特征池中确定优化模型性能的变量组合。使用 10 倍交叉验证训练了 5 次,然后将 5 种机器学习算法(随机梯度提升、随机森林、支持向量机、神经网络和弹性网络惩罚逻辑回归)应用于独立的患者测试集。通过校准、区分、Brier 评分和决策曲线分析评估这些算法。

结果

共纳入 775 例患者,其中 141 例(18.2%)在初次髋关节镜检查后要求并使用一种或多种阿片类药物进行了一次或多次补充。随机梯度提升模型的性能最佳(C 统计量:0.75,校准截距:-0.02,校准斜率:0.88,Brier 评分:0.13)。预测延长使用阿片类药物的 5 个最重要变量是术前改良的 Harris 髋关节评分、年龄、BMI、术前疼痛程度和工人赔偿状况。最终算法被纳入一个开放访问的网络应用程序,可在此处访问:https://orthoapps.shinyapps.io/HPRG_OpioidUse/。

结论

机器学习算法在预测髋关节镜检查后阿片类药物初治患者延长使用阿片类药物方面表现出良好的性能。在临床环境中使用之前,需要对该算法进行外部验证,以确认其预测能力和性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d032/8154386/5dcab5cd9f73/jagrr-5-e21.00093-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验