Suppr超能文献

用于气制液的基于等离子体的多重重整:调整等离子体化学以制取甲醇

Plasma-based multi-reforming for Gas-To-Liquid: tuning the plasma chemistry towards methanol.

作者信息

Snoeckx Ramses, Wang Weizong, Zhang Xuming, Cha Min Suk, Bogaerts Annemie

机构信息

King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Physical Science and Engineering Division (PSE), Thuwal, 23955, Saudi Arabia.

Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerp, Belgium.

出版信息

Sci Rep. 2018 Oct 29;8(1):15929. doi: 10.1038/s41598-018-34359-x.

Abstract

Because of its unique properties, plasma technology has gained much prominence in the microelectronics industry. Recently, environmental and energy applications of plasmas have gained a lot of attention. In this area, the focus is on converting CO and reforming hydrocarbons, with the goal of developing an efficient single-step 'gas-to-liquid' (GTL) process. Here we show that applying tri-reforming principles to plasma-further called 'plasma-based multi-reforming'-allows us to better control the plasma chemistry and thus the formed products. To demonstrate this, we used chemical kinetics calculations supported by experiments and reveal that better control of the plasma chemistry can be achieved by adding O or HO to a mixture containing CH and CO (diluted in N). Moreover, by adding O and HO simultaneously, we can tune the plasma chemistry even further, improving the conversions, thermal efficiency and methanol yield. Unlike thermocatalytic reforming, plasma-based reforming is capable of producing methanol in a single step; and compared with traditional plasma-based dry reforming, plasma-based multi-reforming increases the methanol yield by more than seven times and the thermal efficiency by 49%, as revealed by our model calculations. Thus, we believe that by using plasma-based multi-reforming, 'gas-to-liquid' conversion may be made efficient and scalable.

摘要

由于其独特的性质,等离子体技术在微电子工业中已备受瞩目。近来,等离子体在环境和能源应用方面也引起了广泛关注。在该领域,重点在于一氧化碳的转化和碳氢化合物的重整,目标是开发一种高效的单步“气转液”(GTL)工艺。在此,我们表明将三重整原理应用于等离子体——进一步称为“基于等离子体的多重重整”——使我们能够更好地控制等离子体化学过程,进而控制所形成的产物。为证明这一点,我们使用了实验支持的化学动力学计算,并揭示通过向含有甲烷和一氧化碳(在氮气中稀释)的混合物中添加氧气或水,可以更好地控制等离子体化学过程。此外,通过同时添加氧气和水,我们可以进一步调节等离子体化学过程,提高转化率、热效率和甲醇产率。与热催化重整不同,基于等离子体的重整能够一步生产甲醇;并且我们的模型计算表明,与传统的基于等离子体的干重整相比,基于等离子体的多重重整使甲醇产率提高了七倍多,热效率提高了49%。因此,我们相信通过使用基于等离子体的多重重整,“气转液”转化可能会变得高效且可扩展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d8b/6206038/d125680412fc/41598_2018_34359_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验