Hasan Sazid, Brankovic Aida, Awal Md Abdul, Rezaeieh Sasan Ahdi, Keating Shelley E, Abbosh Amin M, Zamani Ali
IEEE J Biomed Health Inform. 2025 Jan;29(1):142-151. doi: 10.1109/JBHI.2024.3489626. Epub 2025 Jan 7.
Hepatic steatosis, a key factor in chronic liver diseases, is difficult to diagnose early. This study introduces a classifier for hepatic steatosis using microwave technology, validated through clinical trials. Our method uses microwave signals and deep learning to improve detection to reliable results. It includes a pipeline with simulation data, a new deep-learning model called HepNet, and transfer learning. The simulation data, created with 3D electromagnetic tools, is used for training and evaluating the model. HepNet uses skip connections in convolutional layers and two fully connected layers for better feature extraction and generalization. Calibration and uncertainty assessments ensure the model's robustness. Our simulation achieved an F1-score of 0.91 and a confidence level of 0.97 for classifications with entropy ≤0.1, outperforming traditional models like LeNet (0.81) and ResNet (0.87). We also use transfer learning to adapt HepNet to clinical data with limited patient samples. Using H-MRS as the standard for two microwave liver scanners, HepNet achieved high F1-scores of 0.95 and 0.88 for 94 and 158 patient samples, respectively, showing its clinical potential.
肝脂肪变性是慢性肝病的一个关键因素,早期难以诊断。本研究介绍了一种使用微波技术的肝脂肪变性分类器,并通过临床试验进行了验证。我们的方法利用微波信号和深度学习来提高检测的可靠性。它包括一个带有模拟数据的流程、一个名为HepNet的新深度学习模型以及迁移学习。使用3D电磁工具创建的模拟数据用于训练和评估模型。HepNet在卷积层中使用跳跃连接和两个全连接层,以实现更好的特征提取和泛化。校准和不确定性评估确保了模型的稳健性。我们的模拟在熵≤0.1的分类中实现了0.91的F1分数和0.97的置信水平,优于LeNet(0.81)和ResNet(0.87)等传统模型。我们还使用迁移学习使HepNet适应患者样本有限的临床数据。以H-MRS作为两种微波肝脏扫描仪的标准,HepNet分别在94个和158个患者样本中实现了0.95和0.88的高F1分数,显示出其临床潜力。