Suppr超能文献

快速响应、低检测限、正负气压传感:集成疏水聚二甲基硅氧烷薄膜的氮化镓芯片。

Rapid-response, low-detection-limit, positive-negative air pressure sensing: GaN chips integrated with hydrophobic PDMS films.

作者信息

Gui Sizhe, Yu Binlu, Luo Yumeng, Chen Liang, Li Kwai Hei

机构信息

School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China.

Foshan Electrical and Lighting Company Ltd., Foshan, 528000, China.

出版信息

Microsyst Nanoeng. 2024 Nov 1;10(1):162. doi: 10.1038/s41378-024-00766-6.

Abstract

Despite the importance of positive and negative pressure sensing in numerous domains, the availability of a single sensing unit adept at handling this dual task remains highly limited. This study introduces a compact optical device capable of swiftly and precisely detecting positive and negative pressures ranging from -35 kPa to 35 kPa. The GaN chip, which serves as a core component of the device, is monolithically integrated with light-emitting and light-detecting elements. By combining a deformable PDMS film coated with a hydrophobic layer, the chip can respond to changes in optical reflectance induced by pressure fluctuations. The integrated sensing device has low detection limits of 4.3 Pa and -7.8 Pa and fast response times of 0.14 s and 0.22 s for positive and negative pressure variations, respectively. The device also demonstrates adaptability in capturing distinct human breathing patterns. The proposed device, characterized by its compactness, responsiveness, and ease of operation, holds promise for a variety of pressure-sensing applications.

摘要

尽管正负压力传感在众多领域都很重要,但能够处理这一双重任务的单一传感单元仍然极为有限。本研究介绍了一种紧凑的光学装置,它能够快速、精确地检测范围从 -35 kPa 到 35 kPa 的正负压力。作为该装置核心部件的氮化镓芯片与发光和光检测元件单片集成。通过结合涂有疏水层的可变形聚二甲基硅氧烷(PDMS)薄膜,该芯片能够响应由压力波动引起的光学反射率变化。该集成传感装置对于正负压力变化的检测下限分别为 4.3 Pa 和 -7.8 Pa,响应时间分别为 0.14 s 和 0.22 s。该装置在捕捉不同的人类呼吸模式方面也表现出适应性。所提出的装置具有紧凑、响应迅速和操作简便的特点,有望应用于各种压力传感领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e2c/11527884/22a102f373f5/41378_2024_766_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验