Dela Cruz Ma Carmela P, Paner Joseph Romeo O, Nevado Jose B
Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila.
Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila.
Acta Med Philipp. 2023 Jul 27;57(7):11-23. doi: 10.47895/amp.vi0.3934. eCollection 2023.
Infection can be severely complicated by a dysregulated, whole-body inflammatory response known as sepsis. While previous research showed that genetic predisposition is linked to outcome differences, current patient characterization fails to determine which septic patients have greater tendencies to develop into severe sepsis or go into septic shock. As such, the identification of prognostic biomarkers may assist in identifying these high-risk patients and help improve the clinical management of the disease.
In this study, we aimed to identify molecular patterns involved in sepsis. We also aimed to identify essential genes associated with the disease's survival which could serve as potential prognosticators for the disease.
We used weighted gene co-expression analysis (WGCNA) to analyze GSE63042, an RNA expression dataset from 129 patients with systemic inflammatory response syndrome or sepsis, including 78 sepsis survivors and 28 sepsis nonsurvivors. This analysis included identifying gene modules that differentiate sepsis survivors from nonsurvivors and qualitatively assessing differentially expressed genes. We then used STRING's protein-protein interaction and gene ontology analysis to determine the functional and pathway relationships of the genes in the top modules. Lastly, we assessed the prognosticator abilities of the hub genes using ROC analysis.
We found four diverse co-expression gene modules significantly associated with sepsis survival. Our differential gene expression analysis, combined with protein-protein interaction and gene ontology analysis, revealed that the hub genes of these modules - , and may serve as candidate markers for sepsis prognosis. These markers were significantly downregulated in sepsis nonsurvivors compared with sepsis survivors.
Weighted gene co-expression analysis, gene ontology enrichment analysis, and proteinprotein network interaction analysis of transcriptomic data from sepsis survivors and nonsurvivors revealed , and as potential biomarkers for sepsis prognosis. These genes are associated with functions related to proper immune response, and their downregulation in sepsis nonsurvivors suggests eventual immune exhaustion in late sepsis. Further analyses, however, are necessary to validate their roles in sepsis progression and patient survival.
感染可能会因一种称为脓毒症的失调的全身炎症反应而严重复杂化。虽然先前的研究表明遗传易感性与预后差异有关,但目前的患者特征分析未能确定哪些脓毒症患者更易发展为严重脓毒症或进入脓毒性休克。因此,识别预后生物标志物可能有助于识别这些高危患者,并有助于改善该疾病的临床管理。
在本研究中,我们旨在识别参与脓毒症的分子模式。我们还旨在识别与该疾病生存相关的关键基因,这些基因可作为该疾病潜在的预后指标。
我们使用加权基因共表达分析(WGCNA)来分析GSE63042,这是一个来自129例全身炎症反应综合征或脓毒症患者的RNA表达数据集,包括78例脓毒症幸存者和28例脓毒症非幸存者。该分析包括识别区分脓毒症幸存者和非幸存者的基因模块,并对差异表达基因进行定性评估。然后,我们使用STRING的蛋白质-蛋白质相互作用和基因本体分析来确定顶级模块中基因之间的功能和通路关系。最后,我们使用ROC分析评估中心基因的预后指标能力。
我们发现四个不同的共表达基因模块与脓毒症生存显著相关。我们的差异基因表达分析,结合蛋白质-蛋白质相互作用和基因本体分析,表明这些模块的中心基因—— 、 和 可能作为脓毒症预后的候选标志物。与脓毒症幸存者相比,这些标志物在脓毒症非幸存者中显著下调。
对脓毒症幸存者和非幸存者的转录组数据进行加权基因共表达分析、基因本体富集分析和蛋白质-蛋白质网络相互作用分析,揭示了 、 和 作为脓毒症预后的潜在生物标志物。这些基因与适当免疫反应相关的功能有关,它们在脓毒症非幸存者中的下调表明脓毒症晚期最终会出现免疫耗竭。然而,需要进一步分析来验证它们在脓毒症进展和患者生存中的作用。