Suppr超能文献

单纯性细菌感染和脓毒症患者的血液转录组分析

Blood transcriptome analysis of patients with uncomplicated bacterial infection and sepsis.

作者信息

Herwanto Velma, Tang Benjamin, Wang Ya, Shojaei Maryam, Nalos Marek, Shetty Amith, Lai Kevin, McLean Anthony S, Schughart Klaus

机构信息

Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia.

Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, Australia.

出版信息

BMC Res Notes. 2021 Feb 27;14(1):76. doi: 10.1186/s13104-021-05488-w.

Abstract

OBJECTIVES

Hospitalized patients who presented within the last 24 h with a bacterial infection were recruited. Participants were assigned into sepsis and uncomplicated infection groups. In addition, healthy volunteers were recruited as controls. RNA was prepared from whole blood, depleted from beta-globin mRNA and sequenced. This dataset represents a highly valuable resource to better understand the biology of sepsis and to identify biomarkers for severe sepsis in humans.

DATA DESCRIPTION

The data presented here consists of raw and processed transcriptome data obtained by next generation RNA sequencing from 105 peripheral blood samples from patients with uncomplicated infections, patients who developed sepsis, septic shock patients, and healthy controls. It is provided as raw sequenced reads and as normalized log transformed relative expression levels. This data will allow performing detailed analyses of gene expression changes between uncomplicated infections and sepsis patients, such as identification of differentially expressed genes, co-regulated modules as well as pathway activation studies.

摘要

目的

招募在过去24小时内出现细菌感染的住院患者。参与者被分为脓毒症组和非复杂性感染组。此外,招募健康志愿者作为对照组。从全血中提取RNA,去除β-珠蛋白mRNA后进行测序。该数据集是一个非常有价值的资源,有助于更好地了解脓毒症的生物学特性,并识别人类严重脓毒症的生物标志物。

数据描述

这里呈现的数据包括通过下一代RNA测序从105份外周血样本获得的原始和处理后的转录组数据,这些样本来自非复杂性感染患者、发生脓毒症的患者、感染性休克患者和健康对照。数据以原始测序读数和标准化对数转换后的相对表达水平形式提供。这些数据将允许对非复杂性感染患者和脓毒症患者之间的基因表达变化进行详细分析,例如鉴定差异表达基因、共调控模块以及通路激活研究。

相似文献

1
Blood transcriptome analysis of patients with uncomplicated bacterial infection and sepsis.
BMC Res Notes. 2021 Feb 27;14(1):76. doi: 10.1186/s13104-021-05488-w.
2
Bioinformatics Analysis for Multiple Gene Expression Profiles in Sepsis.
Med Sci Monit. 2020 Apr 13;26:e920818. doi: 10.12659/MSM.920818.
3
Comprehensive Transcriptome Profiling of Peripheral Blood Mononuclear Cells from Patients with Sepsis.
Int J Med Sci. 2020 Jul 25;17(14):2077-2086. doi: 10.7150/ijms.46910. eCollection 2020.
4
Sustained elevation of resistin, NGAL and IL-8 are associated with severe sepsis/septic shock in the emergency department.
PLoS One. 2014 Oct 24;9(10):e110678. doi: 10.1371/journal.pone.0110678. eCollection 2014.
5
A Novel Single Cell RNA-seq Analysis of Non-Myeloid Circulating Cells in Late Sepsis.
Front Immunol. 2021 Aug 16;12:696536. doi: 10.3389/fimmu.2021.696536. eCollection 2021.
6
Whole Blood Gene Expression Reveals Specific Transcriptome Changes in Neonatal Encephalopathy.
Neonatology. 2019;115(1):68-76. doi: 10.1159/000492420. Epub 2018 Oct 10.
7
Impact of high platelet turnover on the platelet transcriptome: Results from platelet RNA-sequencing in patients with sepsis.
PLoS One. 2022 Jan 27;17(1):e0260222. doi: 10.1371/journal.pone.0260222. eCollection 2022.
10

引用本文的文献

1
AI-driven discovery of minimal sepsis biomarkers for disease detection and progression: precision medicine across diverse populations.
Front Med (Lausanne). 2025 Jul 1;12:1521827. doi: 10.3389/fmed.2025.1521827. eCollection 2025.
2
Exploring ENPP5 as a diagnostic biomarker for sepsis: a comprehensive bioinformatics analysis.
BMC Infect Dis. 2025 Jul 1;25(1):831. doi: 10.1186/s12879-025-11152-6.
10
Ubiquitin regulatory X (UBX) domain-containing protein 6 is essential for autophagy induction and inflammation control in macrophages.
Cell Mol Immunol. 2024 Dec;21(12):1441-1458. doi: 10.1038/s41423-024-01222-1. Epub 2024 Oct 23.

本文引用的文献

1
The global burden of sepsis: barriers and potential solutions.
Crit Care. 2018 Sep 23;22(1):232. doi: 10.1186/s13054-018-2157-z.
2
Sepsis-Induced T Cell Immunoparalysis: The Ins and Outs of Impaired T Cell Immunity.
J Immunol. 2018 Mar 1;200(5):1543-1553. doi: 10.4049/jimmunol.1701618.
3
Mitochondrial function of immune cells in septic shock: A prospective observational cohort study.
PLoS One. 2017 Jun 7;12(6):e0178946. doi: 10.1371/journal.pone.0178946. eCollection 2017.
4
The immune system's role in sepsis progression, resolution, and long-term outcome.
Immunol Rev. 2016 Nov;274(1):330-353. doi: 10.1111/imr.12499.
5
Sepsis: pathophysiology and clinical management.
BMJ. 2016 May 23;353:i1585. doi: 10.1136/bmj.i1585.
6
The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).
JAMA. 2016 Feb 23;315(8):801-10. doi: 10.1001/jama.2016.0287.
7
Sepsis-induced immune dysfunction: can immune therapies reduce mortality?
J Clin Invest. 2016 Jan;126(1):23-31. doi: 10.1172/JCI82224. Epub 2016 Jan 4.
8
Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α.
Immunity. 2015 Mar 17;42(3):484-98. doi: 10.1016/j.immuni.2015.02.001. Epub 2015 Mar 3.
9
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
10
The effects of sepsis on mitochondria.
J Infect Dis. 2012 Feb 1;205(3):392-400. doi: 10.1093/infdis/jir764. Epub 2011 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验