文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肺癌和结肠癌基于图像诊断的进展与挑战:综述

Advancements and Challenges in the Image-Based Diagnosis of Lung and Colon Cancer: A Comprehensive Review.

作者信息

Patharia Pragati, Sethy Prabira Kumar, Nanthaamornphong Aziz

机构信息

Department of Electronics and Communication Engineering, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India.

Department of Electronics, Sambalpur University, Burla, Odisha, India.

出版信息

Cancer Inform. 2024 Oct 16;23:11769351241290608. doi: 10.1177/11769351241290608. eCollection 2024.


DOI:10.1177/11769351241290608
PMID:39483315
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11526153/
Abstract

Image-based diagnosis has become a crucial tool in the identification and management of various cancers, particularly lung and colon cancer. This review delves into the latest advancements and ongoing challenges in the field, with a focus on deep learning, machine learning, and image processing techniques applied to X-rays, CT scans, and histopathological images. Significant progress has been made in imaging technologies like computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), which, when combined with machine learning and artificial intelligence (AI) methodologies, have greatly enhanced the accuracy of cancer detection and characterization. These advances have enabled early detection, more precise tumor localization, personalized treatment plans, and overall improved patient outcomes. However, despite these improvements, challenges persist. Variability in image interpretation, the lack of standardized diagnostic protocols, unequal access to advanced imaging technologies, and concerns over data privacy and security within AI-based systems remain major obstacles. Furthermore, integrating imaging data with broader clinical information is crucial to achieving a more comprehensive approach to cancer diagnosis and treatment. This review provides valuable insights into the recent developments and challenges in image-based diagnosis for lung and colon cancers, underscoring both the remarkable progress and the hurdles that still need to be overcome to optimize cancer care.

摘要

基于图像的诊断已成为识别和管理各种癌症(尤其是肺癌和结肠癌)的关键工具。本综述深入探讨了该领域的最新进展和持续存在的挑战,重点关注应用于X射线、CT扫描和组织病理学图像的深度学习、机器学习和图像处理技术。在计算机断层扫描(CT)、磁共振成像(MRI)和正电子发射断层扫描(PET)等成像技术方面取得了重大进展,这些技术与机器学习和人工智能(AI)方法相结合,大大提高了癌症检测和特征描述的准确性。这些进展实现了早期检测、更精确的肿瘤定位、个性化治疗方案,并总体上改善了患者的治疗效果。然而,尽管有这些改进,挑战依然存在。图像解读的可变性、缺乏标准化诊断方案、先进成像技术获取机会不平等,以及对基于人工智能的系统中的数据隐私和安全问题的担忧,仍然是主要障碍。此外,将成像数据与更广泛的临床信息相结合对于实现更全面的癌症诊断和治疗方法至关重要。本综述为肺癌和结肠癌基于图像的诊断的最新进展和挑战提供了有价值的见解,强调了在优化癌症护理方面取得的显著进展以及仍需克服的障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bc9/11526153/9250707dcff9/10.1177_11769351241290608-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bc9/11526153/6cfd97ede995/10.1177_11769351241290608-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bc9/11526153/6780a82bfc67/10.1177_11769351241290608-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bc9/11526153/9250707dcff9/10.1177_11769351241290608-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bc9/11526153/6cfd97ede995/10.1177_11769351241290608-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bc9/11526153/6780a82bfc67/10.1177_11769351241290608-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bc9/11526153/9250707dcff9/10.1177_11769351241290608-fig3.jpg

相似文献

[1]
Advancements and Challenges in the Image-Based Diagnosis of Lung and Colon Cancer: A Comprehensive Review.

Cancer Inform. 2024-10-16

[2]
Advancements in Pancreatic Cancer Detection: Integrating Biomarkers, Imaging Technologies, and Machine Learning for Early Diagnosis.

Cureus. 2024-3-20

[3]
Application of Artificial Intelligence in Neuroendocrine Lung Cancer Diagnosis and Treatment: A Systematic Review.

Cureus. 2024-5-24

[4]
Advancements in synthetic CT generation from MRI: A review of techniques, and trends in radiation therapy planning.

J Appl Clin Med Phys. 2024-11

[5]
Deep learning techniques in PET/CT imaging: A comprehensive review from sinogram to image space.

Comput Methods Programs Biomed. 2024-1

[6]
Emerging Trends in AI and Radiomics for Bladder, Kidney, and Prostate Cancer: A Critical Review.

Cancers (Basel). 2024-2-16

[7]
A review of deep learning and radiomics approaches for pancreatic cancer diagnosis from medical imaging.

Curr Opin Gastroenterol. 2023-9-1

[8]
AI-driven innovations in Alzheimer's disease: Integrating early diagnosis, personalized treatment, and prognostic modelling.

Ageing Res Rev. 2024-11

[9]
Artificial intelligence in gastrointestinal endoscopy: a comprehensive review.

Ann Gastroenterol. 2024

[10]
Novel tools for early diagnosis and precision treatment based on artificial intelligence.

Chin Med J Pulm Crit Care Med. 2023-9-9

本文引用的文献

[1]
Aligning Cancer Research Priorities in Europe with Recommendations for Conquering Cancer: A Comprehensive Analysis.

Healthcare (Basel). 2024-1-19

[2]
Liquid Biopsy: An Evolving Paradigm for Non-invasive Disease Diagnosis and Monitoring in Medicine.

Cureus. 2023-12-8

[3]
How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications.

Bioengineering (Basel). 2023-12-18

[4]
Fatigue, Weight Loss, and Acute Chest Pain in a 15-year-old Boy.

Pediatr Rev. 2023-12-1

[5]
Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging.

Diagnostics (Basel). 2023-8-25

[6]
Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine.

Nanotheranostics. 2023

[7]
Al-Biruni Earth Radius Optimization with Transfer Learning Based Histopathological Image Analysis for Lung and Colon Cancer Detection.

Cancers (Basel). 2023-6-23

[8]
Leveraging Marine Predators Algorithm with Deep Learning for Lung and Colon Cancer Diagnosis.

Cancers (Basel). 2023-3-3

[9]
A Framework for Lung and Colon Cancer Diagnosis via Lightweight Deep Learning Models and Transformation Methods.

Diagnostics (Basel). 2022-11-23

[10]
Colon Cancer Diagnosis Based on Machine Learning and Deep Learning: Modalities and Analysis Techniques.

Sensors (Basel). 2022-11-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索