文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习和深度学习的结肠癌诊断:模态分析和技术。

Colon Cancer Diagnosis Based on Machine Learning and Deep Learning: Modalities and Analysis Techniques.

机构信息

Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt.

Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha 13512, Egypt.

出版信息

Sensors (Basel). 2022 Nov 28;22(23):9250. doi: 10.3390/s22239250.


DOI:10.3390/s22239250
PMID:36501951
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9739266/
Abstract

The treatment and diagnosis of colon cancer are considered to be social and economic challenges due to the high mortality rates. Every year, around the world, almost half a million people contract cancer, including colon cancer. Determining the grade of colon cancer mainly depends on analyzing the gland's structure by tissue region, which has led to the existence of various tests for screening that can be utilized to investigate polyp images and colorectal cancer. This article presents a comprehensive survey on the diagnosis of colon cancer. This covers many aspects related to colon cancer, such as its symptoms and grades as well as the available imaging modalities (particularly, histopathology images used for analysis) in addition to common diagnosis systems. Furthermore, the most widely used datasets and performance evaluation metrics are discussed. We provide a comprehensive review of the current studies on colon cancer, classified into deep-learning (DL) and machine-learning (ML) techniques, and we identify their main strengths and limitations. These techniques provide extensive support for identifying the early stages of cancer that lead to early treatment of the disease and produce a lower mortality rate compared with the rate produced after symptoms develop. In addition, these methods can help to prevent colorectal cancer from progressing through the removal of pre-malignant polyps, which can be achieved using screening tests to make the disease easier to diagnose. Finally, the existing challenges and future research directions that open the way for future work in this field are presented.

摘要

由于高死亡率,结肠癌的治疗和诊断被认为是社会和经济方面的挑战。每年,全世界有近 50 万人患有癌症,包括结肠癌。确定结肠癌的分级主要取决于通过组织区域分析腺体结构,这导致了各种筛查测试的存在,这些测试可用于研究息肉图像和结直肠癌。本文对结肠癌的诊断进行了全面调查。它涵盖了与结肠癌相关的许多方面,例如其症状和分级,以及可用的成像方式(特别是用于分析的组织病理学图像)以及常见的诊断系统。此外,还讨论了最广泛使用的数据集和性能评估指标。我们对结肠癌的当前研究进行了全面回顾,分为深度学习(DL)和机器学习(ML)技术,并确定了它们的主要优势和局限性。这些技术为识别癌症早期提供了广泛的支持,从而实现早期治疗,降低死亡率,而不是在出现症状后治疗。此外,这些方法可以通过使用筛查测试来预防结直肠癌症的进展,从而消除癌前息肉,使疾病更容易诊断。最后,提出了现有的挑战和未来的研究方向,为该领域的未来工作开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/70863680b5f3/sensors-22-09250-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/01f9afb008b7/sensors-22-09250-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/e416eedfa318/sensors-22-09250-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/00c14dc03f63/sensors-22-09250-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/86df406c3007/sensors-22-09250-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/21dcf8952589/sensors-22-09250-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/d4f0c69a7d9d/sensors-22-09250-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/edb4b81f9561/sensors-22-09250-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/20768897657a/sensors-22-09250-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/3860c29250d2/sensors-22-09250-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/38b8a8d2a7ea/sensors-22-09250-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/70863680b5f3/sensors-22-09250-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/01f9afb008b7/sensors-22-09250-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/e416eedfa318/sensors-22-09250-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/00c14dc03f63/sensors-22-09250-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/86df406c3007/sensors-22-09250-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/21dcf8952589/sensors-22-09250-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/d4f0c69a7d9d/sensors-22-09250-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/edb4b81f9561/sensors-22-09250-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/20768897657a/sensors-22-09250-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/3860c29250d2/sensors-22-09250-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/38b8a8d2a7ea/sensors-22-09250-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/9739266/70863680b5f3/sensors-22-09250-g011.jpg

相似文献

[1]
Colon Cancer Diagnosis Based on Machine Learning and Deep Learning: Modalities and Analysis Techniques.

Sensors (Basel). 2022-11-28

[2]
A comprehensive review of deep learning in colon cancer.

Comput Biol Med. 2020-11

[3]
Breast cancer detection using deep learning: Datasets, methods, and challenges ahead.

Comput Biol Med. 2022-10

[4]
Challenges Facing the Detection of Colonic Polyps: What Can Deep Learning Do?

Medicina (Kaunas). 2019-8-12

[5]
.

Sensors (Basel). 2021-1-22

[6]
A Survey on Machine Learning and Deep Learning-based Computer-Aided Methods for Detection of Polyps in CT Colonography.

Curr Med Imaging. 2021

[7]
Colon cancer diagnosis by means of explainable deep learning.

Sci Rep. 2024-7-3

[8]
Deep learning in CT colonography: differentiating premalignant from benign colorectal polyps.

Eur Radiol. 2022-7

[9]
Cancer Detection Based on Medical Image Analysis with the Help of Machine Learning and Deep Learning Techniques: A Systematic Literature Review.

Curr Med Imaging. 2023

[10]
Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review.

Comput Biol Med. 2022-7

引用本文的文献

[1]
Progress in the application research of cervical cancer screening developed by artificial intelligence in large populations.

Discov Oncol. 2025-7-8

[2]
Cervical cancer prediction using machine learning models based on routine blood analysis.

Sci Rep. 2025-7-2

[3]
Artificial intelligence: clinical applications and future advancement in gastrointestinal cancers.

Front Artif Intell. 2024-12-20

[4]
Advancements and Challenges in the Image-Based Diagnosis of Lung and Colon Cancer: A Comprehensive Review.

Cancer Inform. 2024-10-16

[5]
Efficient colorectal polyp segmentation using wavelet transformation and AdaptUNet: A hybrid U-Net.

Heliyon. 2024-6-26

[6]
Colon Cancer Disease Diagnosis Based on Convolutional Neural Network and Fishier Mantis Optimizer.

Diagnostics (Basel). 2024-7-2

[7]
The role of deep learning in diagnosing colorectal cancer.

Prz Gastroenterol. 2023

[8]
Identification of fibroblast-related genes based on single-cell and machine learning to predict the prognosis and endocrine metabolism of pancreatic cancer.

Front Endocrinol (Lausanne). 2023

[9]
Using DUCK-Net for polyp image segmentation.

Sci Rep. 2023-6-16

本文引用的文献

[1]
Lung and colon cancer classification using medical imaging: a feature engineering approach.

Phys Eng Sci Med. 2022-9

[2]
Deep Learning on Histopathological Images for Colorectal Cancer Diagnosis: A Systematic Review.

Diagnostics (Basel). 2022-3-29

[3]
Deep learning for colon cancer histopathological images analysis.

Comput Biol Med. 2021-9

[4]
Robust Histopathology Image Analysis: to Label or to Synthesize?

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019-6

[5]
Automatic colonic polyp detection using integration of modified deep residual convolutional neural network and ensemble learning approaches.

Comput Methods Programs Biomed. 2021-7

[6]
Granzyme B PET Imaging of Combined Chemotherapy and Immune Checkpoint Inhibitor Therapy in Colon Cancer.

Mol Imaging Biol. 2021-10

[7]
Feedforward Artificial Neural Network-Based Colorectal Cancer Detection Using Hyperspectral Imaging: A Step towards Automatic Optical Biopsy.

Cancers (Basel). 2021-2-25

[8]
Automated Classification and Segmentation in Colorectal Images Based on Self-Paced Transfer Network.

Biomed Res Int. 2021

[9]
.

Sensors (Basel). 2021-1-22

[10]
Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images.

Nat Commun. 2020-12-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索