Department of Electrical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA.
Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA.
Sci Rep. 2022 Jun 24;12(1):10769. doi: 10.1038/s41598-022-15087-9.
Well-defined fluid flows are the hallmark feature of microfluidic culture systems and enable precise control over biophysical and biochemical cues at the cellular scale. Microfluidic flow control is generally achieved using displacement-based (e.g., syringe or peristaltic pumps) or pressure-controlled techniques that provide numerous perfusion options, including constant, ramped, and pulsed flows. However, it can be challenging to integrate these large form-factor devices and accompanying peripherals into incubators or other confined environments. In addition, microfluidic culture studies are primarily carried out under constant perfusion conditions and more complex flow capabilities are often unused. Thus, there is a need for a simplified flow control platform that provides standard perfusion capabilities and can be easily integrated into incubated environments. To this end, we introduce a tunable, 3D printed micro pressure regulator (µPR) and show that it can provide robust flow control capabilities when combined with a battery-powered miniature air pump to support microfluidic applications. We detail the design and fabrication of the µPR and: (i) demonstrate a tunable outlet pressure range relevant for microfluidic applications (1-10 kPa), (ii) highlight dynamic control capabilities in a microfluidic network, (iii) and maintain human umbilical vein endothelial cells (HUVECs) in a multi-compartment culture device under continuous perfusion conditions. We anticipate that our 3D printed fabrication approach and open-access designs will enable customized µPRs that can support a broad range of microfluidic applications.
定义明确的流体流动是微流控培养系统的显著特征,可实现对细胞尺度上的生物物理和生化线索的精确控制。微流控流动控制通常使用基于置换的(例如注射器或蠕动泵)或压力控制技术来实现,这些技术提供了多种灌注选项,包括恒流、斜坡流和脉冲流。然而,将这些大尺寸的设备和配套的外围设备集成到孵育器或其他封闭环境中可能具有挑战性。此外,微流控培养研究主要在恒流灌注条件下进行,而更复杂的流动功能通常未被充分利用。因此,需要一种简化的流动控制平台,该平台提供标准的灌注功能,并且可以轻松集成到孵育环境中。为此,我们引入了一种可调的 3D 打印微压力调节器(µPR),并展示了它与电池供电的微型气泵结合使用时可以提供强大的流动控制能力,从而支持微流控应用。我们详细介绍了 µPR 的设计和制造过程:(i)展示了与微流控应用相关的可调出口压力范围(1-10kPa);(ii)突出了在微流控网络中的动态控制能力;(iii)并在连续灌注条件下维持多腔室培养装置中的人脐静脉内皮细胞(HUVECs)。我们预计,我们的 3D 打印制造方法和开放访问设计将能够支持广泛的微流控应用的定制化 µPR。