Suppr超能文献

基于影像组学的研究提高了预测宫颈癌淋巴管间隙浸润的能力:一项多中心研究。

Habitat-based radiomics enhances the ability to predict lymphovascular space invasion in cervical cancer: a multi-center study.

作者信息

Wang Shuxing, Liu Xiaowen, Wu Yu, Jiang Changsi, Luo Yan, Tang Xue, Wang Rui, Zhang Xiaochun, Gong Jingshan

机构信息

The Second Clinical Medical College, Jinan University, Shenzhen, China.

Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou, China.

出版信息

Front Oncol. 2023 Oct 26;13:1252074. doi: 10.3389/fonc.2023.1252074. eCollection 2023.

Abstract

INTRODUCTION

Lymphovascular space invasion (LVSI) is associated with lymph node metastasis and poor prognosis in cervical cancer. In this study, we investigated the potential of radiomics, derived from magnetic resonance (MR) images using habitat analysis, as a non-invasive surrogate biomarker for predicting LVSI in cervical cancer.

METHODS

This retrospective study included 300 patients with cervical cancer who underwent surgical treatment at two centres (centre 1 = 198 and centre 2 = 102). Using the k-means clustering method, contrast-enhanced T1-weighted imaging (CE-T1WI) images were segmented based on voxel and entropy values, creating sub-regions within the volume ofinterest. Radiomics features were extracted from these sub-regions. Pearson correlation coefficient and least absolute shrinkage and selection operator LASSO) regression methods were used to select features associated with LVSI in cervical cancer. Support vector machine (SVM) model was developed based on the radiomics features extracted from each sub-region in the training cohort.

RESULTS

The voxels and entropy values of the CE-T1WI images were clustered into three sub-regions. In the training cohort, the AUCs of the SVM models based on radiomics features derived from the whole tumour, habitat 1, habitat 2, and habitat 3 models were 0.805 (95% confidence interval [CI]: 0.745-0.864), 0.873(95% CI: 0.824-0.922), 0.869 (95% CI: 0.821-0.917), and 0.870 (95% CI: 0.821-0.920), respectively. Compared with whole tumour model, the predictive performances of habitat 3 model was the highest in the external test cohort (0.780 [95% CI: 0.692-0.869]).

CONCLUSIONS

The radiomics model based on the tumour sub-regional habitat demonstrated superior predictive performance for an LVSI in cervical cancer than that of radiomics model derived from the whole tumour.

摘要

引言

淋巴管间隙浸润(LVSI)与宫颈癌的淋巴结转移及不良预后相关。在本研究中,我们探讨了基于磁共振(MR)图像通过栖息地分析得出的放射组学作为预测宫颈癌LVSI的非侵入性替代生物标志物的潜力。

方法

这项回顾性研究纳入了在两个中心(中心1 = 198例,中心2 = 102例)接受手术治疗的300例宫颈癌患者。使用k均值聚类方法,基于体素和熵值对对比增强T1加权成像(CE-T1WI)图像进行分割,在感兴趣体积内创建子区域。从这些子区域中提取放射组学特征。采用Pearson相关系数和最小绝对收缩和选择算子(LASSO)回归方法选择与宫颈癌LVSI相关的特征。基于训练队列中每个子区域提取的放射组学特征建立支持向量机(SVM)模型。

结果

CE-T1WI图像的体素和熵值被聚类为三个子区域。在训练队列中,基于全肿瘤、栖息地1、栖息地2和栖息地3模型的放射组学特征的SVM模型的AUC分别为0.805(95%置信区间[CI]:0.745 - 0.864)、0.873(95% CI:0.824 - 0.922)、0.869(95% CI:0.821 - 0.917)和0.870(95% CI:0.821 - 0.920)。与全肿瘤模型相比,栖息地3模型在外部测试队列中的预测性能最高(0.780 [95% CI:0.692 - 0.869])。

结论

基于肿瘤子区域栖息地的放射组学模型在预测宫颈癌LVSI方面比基于全肿瘤的放射组学模型具有更高的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b0b/10637586/8374ebcac279/fonc-13-1252074-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验