Suppr超能文献

用于关联术后早期胃癌邻近样本中淋巴结转移的三基因甲基化模型的评估

Evaluation of a three-gene methylation model for correlating lymph node metastasis in postoperative early gastric cancer adjacent samples.

作者信息

Chen Shang, Long Shoubin, Liu Yaru, Wang Shenglong, Hu Qian, Fu Li, Luo Dixian

机构信息

Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China.

Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen University, Shenzhen, China.

出版信息

Front Oncol. 2024 Oct 17;14:1432869. doi: 10.3389/fonc.2024.1432869. eCollection 2024.

Abstract

BACKGROUND

Lymph node metastasis (LNM) has a profound impact on the treatment and prognosis of early gastric cancer (EGC), yet the existing evaluation methods lack accuracy. Recent research has underscored the role of precancerous lesions in tumor progression and metastasis. The objective of this study was to utilize the previously developed EGC LNM prediction model to further validate and extend the analysis in paired adjacent tissue samples.

METHODS

We evaluated the model in a monocentric study using Methylight, a methylation-specific PCR technique, on postoperative fresh-frozen EGC samples (n = 129) and paired adjacent tissue samples (n = 129).

RESULTS

The three-gene methylation model demonstrated remarkable efficacy in both EGC and adjacent tissues. The model demonstrated excellent performance, with areas under the curve (AUC) of 0.85 and 0.82, specificities of 85.1% and 80.5%, sensitivities of 83.3% and 73.8%, and accuracies of 84.5% and 78.3%, respectively. It is noteworthy that the model demonstrated superior performance compared to computed tomography (CT) imaging in the adjacent tissue group, with an area under the curve (AUC) of 0.86 compared to 0.64 (p < 0.001). Furthermore, the model demonstrated superior diagnostic capability in these adjacent tissues (AUC = 0.82) compared to traditional clinicopathological features, including ulceration (AUC = 0.65), invasional depth (AUC = 0.66), and lymphovascular invasion (AUC = 0.69). Additionally, it surpassed traditional models based on these features (AUC = 0.77).

CONCLUSION

The three-gene methylation prediction model for EGC LNM is highly effective in both cancerous and adjacent tissue samples in a postoperative setting, providing reliable diagnostic information. This extends its clinical utility, particularly when tumor samples are scarce, making it a valuable tool for evaluating LNM status and assisting in treatment planning.

摘要

背景

淋巴结转移(LNM)对早期胃癌(EGC)的治疗和预后有深远影响,但现有的评估方法缺乏准确性。最近的研究强调了癌前病变在肿瘤进展和转移中的作用。本研究的目的是利用先前开发的EGC LNM预测模型,在配对的相邻组织样本中进一步验证并扩展分析。

方法

我们在一项单中心研究中,使用甲基化特异性PCR技术Methylight,对术后新鲜冷冻的EGC样本(n = 129)和配对的相邻组织样本(n = 129)评估该模型。

结果

三基因甲基化模型在EGC和相邻组织中均显示出显著疗效。该模型表现出色,曲线下面积(AUC)分别为0.85和0.82,特异性分别为85.1%和80.5%,敏感性分别为83.3%和73.8%,准确性分别为84.5%和78.3%。值得注意的是,在相邻组织组中,该模型与计算机断层扫描(CT)成像相比表现更优,曲线下面积(AUC)为0.86,而CT成像为0.64(p < 0.001)。此外,与包括溃疡(AUC = 0.65)、浸润深度(AUC = 0.66)和淋巴管浸润(AUC = 0.69)在内的传统临床病理特征相比,该模型在这些相邻组织中显示出更强的诊断能力(AUC = 0.82)。此外,它超过了基于这些特征的传统模型(AUC = 0.77)。

结论

EGC LNM的三基因甲基化预测模型在术后癌组织和相邻组织样本中均非常有效,可提供可靠的诊断信息。这扩展了其临床应用价值,特别是在肿瘤样本稀缺时,使其成为评估LNM状态和辅助治疗规划的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efeb/11524798/6c88065748b8/fonc-14-1432869-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验