Suppr超能文献

使用变分自编码器进行心电图特征提取的机器学习方法来分类左心室肥大。

Machine learning to classify left ventricular hypertrophy using ECG feature extraction by variational autoencoder.

作者信息

Gupta Amulya, Harvey Christopher J, DeBauge Ashley, Shomaji Sumaiya, Yao Zijun, Noheria Amit

机构信息

Department of Cardiovascular Medicine, The University of Kansas Medical Center, Kansas City, Kansas.

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.

出版信息

medRxiv. 2024 Oct 15:2024.10.14.24315460. doi: 10.1101/2024.10.14.24315460.

Abstract

BACKGROUND

Traditional ECG criteria for left ventricular hypertrophy (LVH) have low diagnostic yield. Machine learning (ML) can improve ECG classification.

METHODS

ECG summary features (rate, intervals, axis), R-wave, S-wave and overall-QRS amplitudes, and QRS/QRST voltage-time integrals (VTIs) were extracted from 12-lead, vectorcardiographic X-Y-Z-lead, and root-mean-square (3D) representative-beat ECGs. Latent features were extracted by variational autoencoder from X-Y-Z and 3D representative-beat ECGs. Logistic regression, random forest, light gradient boosted machine (LGBM), residual network (ResNet) and multilayer perceptron network (MLP) models using ECG features and sex, and a convolutional neural network (CNN) using ECG signals, were trained to predict LVH (left ventricular mass indexed in women >95 g/m², men >115 g/m²) on 225,333 adult ECG-echocardiogram (within 45 days) pairs. AUROCs for LVH classification were obtained in a separate test set for individual ECG variables, traditional criteria and ML models.

RESULTS

In the test set (n=25,263), AUROC for LVH classification was higher for ML models using ECG features (LGBM 0.790, MLP 0.789, ResNet 0.788) as compared to the best individual variable (VTI 0.677), the best traditional criterion (Cornell voltage-duration product 0.647) and CNN using ECG signal (0.767). Among patients without LVH who had a follow-up echocardiogram >1 (closest to 5) years later, LGBM false positives, compared to true negatives, had a 2.63 (95% CI 2.01, 3.45)-fold higher risk for developing LVH (p<0.0001).

CONCLUSIONS

ML models are superior to traditional ECG criteria to classify-and predict future-LVH. Models trained on extracted ECG features, including variational autoencoder latent variables, outperformed CNN directly trained on ECG signal.

摘要

背景

传统的左心室肥厚(LVH)心电图标准诊断率较低。机器学习(ML)可以改善心电图分类。

方法

从12导联、心电向量图X-Y-Z导联和均方根(3D)代表性心搏心电图中提取心电图汇总特征(心率、间期、电轴)、R波、S波和整体QRS波振幅以及QRS/QRST电压-时间积分(VTI)。通过变分自编码器从X-Y-Z和3D代表性心搏心电图中提取潜在特征。使用心电图特征和性别训练逻辑回归、随机森林、轻梯度提升机(LGBM)、残差网络(ResNet)和多层感知器网络(MLP)模型,以及使用心电图信号训练卷积神经网络(CNN),以预测225333对成人心电图-超声心动图(45天内)中的LVH(女性左心室质量指数>95 g/m²,男性>115 g/m²)。在单独的测试集中获得个体心电图变量、传统标准和ML模型的LVH分类受试者工作特征曲线下面积(AUROC)。

结果

在测试集(n=25263)中,与最佳个体变量(VTI 0.677)、最佳传统标准(康奈尔电压-持续时间乘积0.647)和使用心电图信号的CNN(0.767)相比,使用心电图特征的ML模型(LGBM 0.790、MLP 0.789、ResNet 0.788)的LVH分类AUROC更高。在随访超声心动图>1(最接近5)年的无LVH患者中,与真阴性相比,LGBM假阳性发生LVH的风险高2.63(95%CI 2.01,3.45)倍(p<0.0001)。

结论

ML模型在分类和预测未来LVH方面优于传统心电图标准。基于提取的心电图特征(包括变分自编码器潜在变量)训练的模型优于直接基于心电图信号训练的CNN。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25ad/11527075/2093b3235fa6/nihpp-2024.10.14.24315460v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验