Suppr超能文献

生物医学数据的人工智能准备情况:Bridge2AI 建议

AI-readiness for Biomedical Data: Bridge2AI Recommendations.

作者信息

Clark Timothy, Caufield Harry, Parker Jillian A, Al Manir Sadnan, Amorim Edilberto, Eddy James, Gim Nayoon, Gow Brian, Goar Wesley, Haendel Melissa, Hansen Jan N, Harris Nomi, Hermjakob Henning, Joachimiak Marcin, Jordan Gianna, Lee In-Hee, McWeeney Shannon K, Nebeker Camille, Nikolov Milen, Shaffer Jamie, Sheffield Nathan, Sheynkman Gloria, Stevenson James, Chen Jake Y, Mungall Chris, Wagner Alex, Kong Sek Won, Ghosh Satrajit S, Patel Bhavesh, Williams Andrew, Munoz-Torres Monica C

机构信息

University of Virginia.

Lawrence Berkeley National Laboratory.

出版信息

bioRxiv. 2024 Nov 24:2024.10.23.619844. doi: 10.1101/2024.10.23.619844.

Abstract

Biomedical research and clinical practice are in the midst of a transition toward significantly increased use of artificial intelligence (AI) and machine learning (ML) methods. These advances promise to enable qualitatively deeper insight into complex challenges formerly beyond the reach of analytic methods and human intuition while placing increased demands on ethical and explainable artificial intelligence (XAI), given the opaque nature of many deep learning methods. The U.S. National Institutes of Health (NIH) has initiated a significant research and development program, Bridge2AI, aimed at producing new "flagship" datasets designed to support AI/ML analysis of complex biomedical challenges, elucidate best practices, develop tools and standards in AI/ML data science, and disseminate these datasets, tools, and methods broadly to the biomedical community. An essential set of concepts to be developed and disseminated in this program along with the data and tools produced are criteria for AI-readiness of data, including critical considerations for XAI and ethical, legal, and social implications (ELSI) of AI technologies. NIH Bridge to Artificial Intelligence (Bridge2AI) Standards Working Group members prepared this article to present methods for assessing the AI-readiness of biomedical data and the data standards perspectives and criteria we have developed throughout this program. While the field is rapidly evolving, these criteria are foundational for scientific rigor and the ethical design and application of biomedical AI methods.

摘要

生物医学研究和临床实践正处于一个向大幅增加使用人工智能(AI)和机器学习(ML)方法转变的过程中。这些进展有望使人们对以前分析方法和人类直觉无法触及的复杂挑战有更深入的定性洞察,同时鉴于许多深度学习方法的不透明性,对道德和可解释人工智能(XAI)提出了更高的要求。美国国立卫生研究院(NIH)启动了一项重要的研发计划,即Bridge2AI,旨在生成新的“旗舰”数据集,以支持对复杂生物医学挑战进行人工智能/机器学习分析,阐明最佳实践,开发人工智能/机器学习数据科学中的工具和标准,并将这些数据集、工具和方法广泛传播给生物医学领域。在该计划中,除了所产生的数据和工具外,还需要开发和传播的一组基本概念是数据的人工智能就绪标准,包括对可解释人工智能以及人工智能技术的伦理、法律和社会影响(ELSI)的关键考虑因素。NIH人工智能桥梁(Bridge2AI)标准工作组的成员撰写本文,以介绍评估生物医学数据的人工智能就绪情况的方法,以及我们在整个计划中制定的数据标准观点和标准。虽然该领域正在迅速发展,但这些标准是科学严谨性以及生物医学人工智能方法的伦理设计和应用的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6412/11589904/3e236b3cc029/nihpp-2024.10.23.619844v4-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验