Suppr超能文献

在对功能正电子发射断层扫描(fPET)-氟代脱氧葡萄糖(FDG)的分析中:基线特征错误描述可能会引入人为的代谢(去)激活。

On the analysis of functional PET (fPET)-FDG: baseline mischaracterization can introduce artifactual metabolic (de)activations.

作者信息

Coursey Sean E, Mandeville Joseph, Reed Murray B, Hartung Grant A, Garimella Arun, Sari Hasan, Lanzenberger Rupert, Price Julie C, Polimeni Jonathan R, Greve Douglas N, Hahn Andreas, Chen Jingyuan E

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.

College of Science, Northeastern University, Boston, MA, USA.

出版信息

bioRxiv. 2024 Oct 21:2024.10.17.618550. doi: 10.1101/2024.10.17.618550.

Abstract

Functional Positron Emission Tomography (fPET) with (bolus plus) constant infusion of [F]-fluorodeoxyglucose FDG), known as fPET-FDG, is a recently introduced technique in human neuroimaging, enabling the detection of dynamic glucose metabolism changes within a single scan. However, the statistical analysis of fPET-FDG data remains challenging because its signal and noise characteristics differ from both classic bolus-administration FDG PET and from functional Magnetic Resonance Imaging (fMRI), which together compose the primary sources of inspiration for analytical methods used by fPET-FDG researchers. In this study, we present an investigate of how inaccuracies in modeling baseline FDG uptake can introduce artifactual patterns to detrended TAC residuals, potentially introducing spurious (de)activations to general linear model (GLM) analyses. By combining simulations and empirical data from both constant infusion and bolus-plus-constant infusion protocols, we evaluate the effects of various baseline modeling methods, including polynomial detrending, regression against the global mean time-activity curve, and two analytical methods based on tissue compartment model kinetics. Our findings indicate that improper baseline removal can introduce statistically significant artifactual effects, although these effects characterized in this study (2-8%) are generally smaller than those reported by previous literature employing robust sensory stimulation (10-30%). We discuss potential strategies to mitigate this issue, including informed baseline modeling, optimized tracer administration protocols, and careful experimental design. These insights aim to enhance the reliability of fPET-FDG in capturing true metabolic dynamics in neuroimaging research.

摘要

功能性正电子发射断层扫描(fPET),通过(团注加)持续输注[F] - 氟脱氧葡萄糖(FDG),即fPET - FDG,是人类神经成像中最近引入的一项技术,能够在单次扫描中检测动态葡萄糖代谢变化。然而,fPET - FDG数据的统计分析仍然具有挑战性,因为其信号和噪声特征既不同于经典的团注给药FDG PET,也不同于功能磁共振成像(fMRI),而后两者共同构成了fPET - FDG研究人员所使用分析方法的主要灵感来源。在本研究中,我们探讨了基线FDG摄取建模中的不准确如何给去趋势化的时间 - 活度曲线(TAC)残差引入人为模式,从而可能给一般线性模型(GLM)分析引入虚假的(去)激活。通过结合来自持续输注和团注加持续输注方案的模拟数据和实证数据,我们评估了各种基线建模方法的效果,包括多项式去趋势、针对全局平均时间 - 活度曲线的回归,以及基于组织房室模型动力学的两种分析方法。我们的研究结果表明,不当的基线去除会引入具有统计学意义的人为效应,尽管本研究中所表征的这些效应(约2 - 8%)通常小于先前采用强烈感觉刺激的文献所报道的效应(约10 - 30%)。我们讨论了减轻该问题的潜在策略,包括明智的基线建模、优化的示踪剂给药方案和精心的实验设计。这些见解旨在提高fPET - FDG在神经成像研究中捕捉真实代谢动力学方面的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db57/11526866/f243815e73f3/nihpp-2024.10.17.618550v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验