Suppr超能文献

关于功能正电子发射断层扫描(fPET)-氟代脱氧葡萄糖(FDG)分析:基线特征错误描述可能会引入人为的代谢(去)激活。

On the analysis of functional PET (fPET)-FDG: Baseline mischaracterization can introduce artifactual metabolic (de)activations.

作者信息

Coursey Sean E, Mandeville Joseph, Reed Murray B, Hartung Grant A, Garimella Arun, Sari Hasan, Lanzenberger Rupert, Price Julie C, Polimeni Jonathan R, Greve Douglas N, Hahn Andreas, Chen Jingyuan E

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States.

College of Science, Northeastern University, Boston, MA, United States.

出版信息

Imaging Neurosci (Camb). 2025 Aug 28;3. doi: 10.1162/IMAG.a.110. eCollection 2025.

Abstract

Functional Positron Emission Tomography (fPET) with (bolus plus) constant infusion of [F]-fluorodeoxyglucose (FDG), known as fPET-FDG, is a recently introduced technique in human neuroimaging, enabling the detection of dynamic glucose metabolism changes within a single scan. However, the statistical analysis of fPET-FDG data remains challenging because its signal and noise characteristics differ from both classic bolus-administration FDG PET and from functional Magnetic Resonance Imaging (fMRI), which together compose the primary sources of inspiration for analytical methods used by fPET-FDG researchers. In this study, we present an investigation of how inaccuracies in modeling baseline FDG uptake can introduce artifactual patterns to detrended time-activity curve (TAC) residuals, potentially introducing spurious (de)activations to general linear model (GLM) analyses. By combining simulations and empirical data from both constant infusion and bolus-plus-constant infusion protocols, we evaluate the effects of various baseline modeling methods, including polynomial detrending, regression against the global mean time-activity curve, and two analytical methods based on tissue compartment model kinetics. Our findings indicate that improper baseline removal can introduce statistically significant artifactual effects, although these effects characterized in this study (2-8%) are generally smaller than those reported by previous literature employing robust sensory stimulation (10-30%). We discuss potential strategies to mitigate this issue, including informed baseline modeling, optimized tracer administration protocols, and careful experimental design. These insights aim to enhance the reliability of fPET-FDG in capturing true metabolic dynamics in neuroimaging research.

摘要

功能正电子发射断层扫描(fPET)结合(团注加)[F] - 氟脱氧葡萄糖(FDG)持续输注,即fPET - FDG,是人类神经成像中最近引入的一项技术,能够在单次扫描中检测动态葡萄糖代谢变化。然而,fPET - FDG数据的统计分析仍然具有挑战性,因为其信号和噪声特征既不同于经典的团注给药FDG PET,也不同于功能磁共振成像(fMRI),而后两者共同构成了fPET - FDG研究人员所使用分析方法的主要灵感来源。在本研究中,我们探讨了在对基线FDG摄取进行建模时的不准确之处如何给去趋势化的时间 - 活动曲线(TAC)残差引入人为模式,从而可能给通用线性模型(GLM)分析引入虚假的(去)激活。通过结合来自持续输注和团注加持续输注方案的模拟数据和实证数据,我们评估了各种基线建模方法的效果,包括多项式去趋势化、针对全局平均时间 - 活动曲线的回归以及基于组织房室模型动力学的两种分析方法。我们的研究结果表明,不恰当的基线去除可能会引入具有统计学意义的人为效应,尽管本研究中所表征的这些效应(约2 - 8%)通常小于先前采用强烈感觉刺激的文献所报道的效应(约10 - 30%)。我们讨论了减轻这一问题的潜在策略,包括明智的基线建模、优化的示踪剂给药方案以及精心的实验设计。这些见解旨在提高fPET - FDG在神经成像研究中捕捉真实代谢动力学的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a3/12395282/ad9fcd2d0aa5/IMAG.a.110_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验