Suppr超能文献

用于安全稳定全固态电池的超薄多功能聚合物电解质的构建。

Construction of an ultrathin multi-functional polymer electrolyte for safe and stable all-solid-state batteries.

作者信息

Zhang Youjia, Cheng Tianhui, Gao Shilun, Ding Hang, Li Zhenxi, Li Lin, Yang Dandan, Yang Huabin, Cao Peng-Fei

机构信息

Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.

School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

出版信息

Mater Horiz. 2025 Feb 17;12(4):1189-1199. doi: 10.1039/d4mh01037j.

Abstract

The ever-increasing demand for safe and high-energy-density batteries urges the exploration of ultrathin, lightweight solid electrolytes with high ionic conductivity. Solid polymer electrolytes (SPEs) with high flexibility, reduced interfacial resistance and excellent processability have been attracting significant attentions. However, reducing the thickness of SPEs to be comparable with that of commercial separators increases the risk of short-circuiting. Herein, an ultrathin (≈7 μm), flexible and mechanical robust SPE was constructed from a rationally designed multi-functional polymer network, , poly[2,2,2-trifluoroethyl methacrylate--(2-ethylhexyl acrylate)--methyl methacrylate--1,4-bis(acryloyloxy)butane] (PTEM) and porous polyethylene (PE). The resultant PTEM@PE electrolyte possesses a high tensile strength of 128.0 MPa with extensibility up to 34.8%, which could effectively prevent short-circuiting and minimize the interfacial resistance of cells. The obtained all-solid-state Li|PTEM@PE|LiFePO cell exhibited stable cycling performance over 1500 cycles at 0.5 C with a capacity retention of 74.4%. With high-voltage NCM811 as the cathode, the cell fabricated with PTEM@PE showed a remarkable capacity retention of 84.2% over 500 cycles. Even with the high-mass loading (≈3 mA h cm) NCM811 cathode, the cell could be operated at ambient temperature, demonstrating superior ion-migration kinetics. The current design provides a promising strategy to develop ultrathin and multifunctional solid electrolytes for safe, long-cycling and high-energy-density all-solid-state batteries.

摘要

对安全且高能量密度电池的需求不断增加,促使人们探索具有高离子电导率的超薄、轻质固体电解质。具有高柔韧性、降低的界面电阻和优异加工性能的固体聚合物电解质(SPE)一直备受关注。然而,将SPE的厚度减小到与商用隔膜相当会增加短路风险。在此,通过合理设计的多功能聚合物网络聚[甲基丙烯酸2,2,2 - 三氟乙酯 - (丙烯酸2 - 乙基己酯) - 甲基丙烯酸甲酯 - 1,4 - 双(丙烯酰氧基)丁烷](PTEM)和多孔聚乙烯(PE)构建了一种超薄(≈7μm)、柔性且机械坚固的SPE。所得的PTEM@PE电解质具有128.0MPa的高拉伸强度和高达34.8%的伸长率,可有效防止短路并使电池的界面电阻最小化。所制备的全固态Li|PTEM@PE|LiFePO电池在0.5C下1500次循环中表现出稳定的循环性能,容量保持率为74.4%。以高电压NCM811作为正极,用PTEM@PE制备的电池在500次循环中表现出84.2%的显著容量保持率。即使使用高质量负载(≈3mA h cm)的NCM811正极,该电池也能在环境温度下运行,展示出优异的离子迁移动力学。当前的设计为开发用于安全、长循环和高能量密度全固态电池的超薄多功能固体电解质提供了一种有前景的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验