Suppr超能文献

将瘦供体的微生物群转移与益生元结合使用可防止肥胖大鼠体重过度增加并改善肠道-大脑迷走神经信号。

Transfer of microbiota from lean donors in combination with prebiotics prevents excessive weight gain and improves gut-brain vagal signaling in obese rats.

机构信息

Department of Nutritional Science, University of Georgia, Athens, GA, USA.

Emory University School of Medicine, Atlanta, GA, USA.

出版信息

Gut Microbes. 2024 Jan-Dec;16(1):2421581. doi: 10.1080/19490976.2024.2421581. Epub 2024 Nov 1.

Abstract

Gastrointestinal (GI) microbiota plays an active role in regulating the host's immune system and metabolism, as well as certain pathophysiological processes. Diet is the main factor modulating GI microbiota composition and studies have shown that high fat (HF) diets induce detrimental changes (dysbiosis) in the GI bacterial makeup. HF diet induced dysbiosis has been associated with structural and functional changes in gut-brain vagally mediated signaling system, associated with overeating and obesity. Although HF-driven changes in microbiota composition are sufficient to alter vagal signaling, it is unknown if improving microbiota composition after diet-induced obesity has been established can ameliorate gut-brain signaling and metabolic outcomes. In this study, we evaluated the effect of lean gut microbiota transfer in obese, vagally compromised, rats on gut-brain communication, food intake, and body weight. Male rats were maintained on regular chow or 45% HF diet for nine weeks followed by three weeks of microbiota depletion using antibiotics. The animals were then divided into four groups ( = 10 each): LF - control fed regular chow, LF-LF - chow fed animals that received microbiota from chow fed donors, HF-LF - HF fed animals that received microbiota from chow fed donors, and HF-HF - HF fed animals that received microbiota from HF fed donors. HF-LF animals received inulin as a prebiotic to aid the establishment of the lean microbiome. We found that transferring a LF microbiota to HF fed animals (HF-LF) reduced caloric intake during the light phase when compared with HF-HF rats and prevented additional excessive weight gain. HF-LF animals displayed an increase in postprandial activation of both primary sensory neurons innervating the GI tract and brainstem secondary neurons. We concluded from these data that improving microbiota composition in obese rats is sufficient to ameliorate gut-brain communication and restore normal feeding patterns which was associated with a reduction in weight gain.

摘要

胃肠道(GI)微生物群在调节宿主的免疫系统和新陈代谢以及某些病理生理过程中发挥着积极作用。饮食是调节 GI 微生物群组成的主要因素,研究表明高脂肪(HF)饮食会导致 GI 细菌组成的有害变化(失调)。HF 饮食诱导的失调与肠道-大脑迷走神经介导信号系统的结构和功能变化有关,与暴饮暴食和肥胖有关。虽然 HF 驱动的微生物群组成变化足以改变迷走神经信号,但尚不清楚在饮食诱导肥胖后改善微生物群组成是否可以改善肠道-大脑信号和代谢结果。在这项研究中,我们评估了瘦肠道微生物群转移在肥胖、迷走神经受损的大鼠中的作用对肠道-大脑通讯、食物摄入和体重的影响。雄性大鼠维持在普通饲料或 45%HF 饮食中 9 周,然后用抗生素进行 3 周的微生物群耗竭。然后,这些动物被分为四组(每组 10 只):LF-对照喂食普通饲料,LF-LF-喂食来自普通饲料喂养供体的微生物群的动物,HF-LF-喂食来自普通饲料喂养供体的微生物群的 HF 喂养动物,和 HF-HF-喂食来自 HF 喂养供体的微生物群的 HF 喂养动物。HF-LF 动物接受菊粉作为益生元,以帮助建立瘦微生物群。我们发现,将 LF 微生物群转移到 HF 喂养的动物(HF-LF)中时,与 HF-HF 大鼠相比,它们在光照期的热量摄入减少,并防止了额外的体重过度增加。HF-LF 动物显示出餐后对胃肠道和脑干二级神经元支配的初级感觉神经元的激活增加。我们从这些数据中得出结论,改善肥胖大鼠的微生物群组成足以改善肠道-大脑通讯并恢复正常的进食模式,这与体重减轻有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6b5/11540078/9387e8231ba4/KGMI_A_2421581_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验