Suppr超能文献

使用新型智能马桶进行长期自动粪便监测:一项可行性研究。

Long-term, automated stool monitoring using a novel smart toilet: A feasibility study.

作者信息

Zhou Jin, Luo Yuying, Darcy Julia W, Lafata Kyle J, Ruiz Jose R, Grego Sonia

机构信息

Duke University, Durham, North Carolina, USA.

Mount Sinai Centre for Gastrointestinal Physiology & Motility, New York, New York, USA.

出版信息

Neurogastroenterol Motil. 2025 Jan;37(1):e14954. doi: 10.1111/nmo.14954. Epub 2024 Nov 1.

Abstract

BACKGROUND

Patients' report of bowel movement consistency is unreliable. We demonstrate the feasibility of long-term automated stool image data collection using a novel Smart Toilet and evaluate a deterministic computer-vision analytic approach to assess stool form according to the Bristol Stool Form Scale (BSFS).

METHODS

Our smart toilet integrates a conventional toilet bowl with an engineered portal to image feces in a predetermined region of the plumbing post-flush. The smart toilet was installed in a workplace bathroom and used by six healthy volunteers. Images were annotated by three experts. A computer vision method based on deep learning segmentation and mathematically defined hand-crafted features was developed to quantify morphological attributes of stool from images.

KEY RESULTS

474 bowel movements images were recorded in total from six subjects over a mean period of 10 months. 3% of images were rated abnormal with stool consistency BSFS 2 and 4% were BSFS 6. Our image analysis algorithm leverages interpretable morphological features and achieves classification of abnormal stool form with 94% accuracy, 81% sensitivity and 95% specificity.

CONCLUSIONS

Our study supports the feasibility and accuracy of long-term, non-invasive automated stool form monitoring with the novel smart toilet system which can eliminate the patient burden of tracking bowel forms.

摘要

背景

患者对排便稠度的报告并不可靠。我们展示了使用新型智能马桶进行长期自动粪便图像数据收集的可行性,并评估了一种确定性计算机视觉分析方法,以根据布里斯托大便分类法(BSFS)评估大便形态。

方法

我们的智能马桶将传统马桶与一个设计好的入口相结合,以便在冲水后管道的预定区域对粪便进行成像。该智能马桶安装在一个工作场所的卫生间,供六名健康志愿者使用。图像由三位专家进行标注。开发了一种基于深度学习分割和数学定义的手工特征的计算机视觉方法,以从图像中量化粪便的形态学属性。

主要结果

在平均10个月的时间里,共记录了来自六名受试者的474张排便图像。3%的图像被评定为大便稠度BSFS 2异常,4%为BSFS 6。我们的图像分析算法利用可解释的形态学特征,对异常大便形态的分类准确率达到94%,灵敏度为81%,特异性为95%。

结论

我们的研究支持了使用新型智能马桶系统进行长期、非侵入性自动大便形态监测的可行性和准确性,该系统可以消除患者追踪大便形态的负担。

相似文献

本文引用的文献

8
ACG Clinical Guidelines: Management of Benign Anorectal Disorders.ACG 临床指南:良性肛肠疾病的管理。
Am J Gastroenterol. 2021 Oct 1;116(10):1987-2008. doi: 10.14309/ajg.0000000000001507.
9
Radiomics: a primer on high-throughput image phenotyping.放射组学:高通量图像表型分析简介。
Abdom Radiol (NY). 2022 Sep;47(9):2986-3002. doi: 10.1007/s00261-021-03254-x. Epub 2021 Aug 25.
10
Digital pathology and computational image analysis in nephropathology.数字病理学和肾脏病学中的计算图像分析。
Nat Rev Nephrol. 2020 Nov;16(11):669-685. doi: 10.1038/s41581-020-0321-6. Epub 2020 Aug 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验