Suppr超能文献

利用大型语言模型加速肌萎缩侧索硬化症眼动打字用户的交流。

Using large language models to accelerate communication for eye gaze typing users with ALS.

机构信息

Google, Mountain View, CA, USA.

Team Gleason Foundation, New Orleans, LA, USA.

出版信息

Nat Commun. 2024 Nov 1;15(1):9449. doi: 10.1038/s41467-024-53873-3.

Abstract

Accelerating text input in augmentative and alternative communication (AAC) is a long-standing area of research with bearings on the quality of life in individuals with profound motor impairments. Recent advances in large language models (LLMs) pose opportunities for re-thinking strategies for enhanced text entry in AAC. In this paper, we present SpeakFaster, consisting of an LLM-powered user interface for text entry in a highly-abbreviated form, saving 57% more motor actions than traditional predictive keyboards in offline simulation. A pilot study on a mobile device with 19 non-AAC participants demonstrated motor savings in line with simulation and relatively small changes in typing speed. Lab and field testing on two eye-gaze AAC users with amyotrophic lateral sclerosis demonstrated text-entry rates 29-60% above baselines, due to significant saving of expensive keystrokes based on LLM predictions. These findings form a foundation for further exploration of LLM-assisted text entry in AAC and other user interfaces.

摘要

加速辅助性和替代性沟通(AAC)中的文本输入是一个长期存在的研究领域,对严重运动障碍者的生活质量有影响。大型语言模型(LLM)的最新进展为重新思考增强 AAC 中的文本输入策略提供了机会。在本文中,我们提出了 SpeakFaster,它由一个基于 LLM 的用户界面组成,用于以高度缩写的形式进行文本输入,在离线模拟中比传统的预测键盘节省 57%以上的运动操作。一项针对 19 名非 AAC 参与者的移动设备的初步研究表明,与模拟结果一致,打字速度相对较小的变化,实现了运动节省。在两名肌萎缩侧索硬化症的眼动 AAC 用户上进行的实验室和现场测试表明,由于基于 LLM 预测的昂贵按键的显著节省,文本输入速度比基线提高了 29%-60%。这些发现为进一步探索 LLM 辅助的 AAC 和其他用户界面中的文本输入奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc68/11530652/3010b748c4fe/41467_2024_53873_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验