School of Computing, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
Sleep Medicine, United Health Services Hospitals, Inc, Binghamton, NY, 13902, USA.
Sci Rep. 2024 Nov 1;14(1):26312. doi: 10.1038/s41598-024-76197-0.
Clinical sleep diagnosis traditionally relies on polysomnography (PSG) and expert manual classification of sleep stages. Recent advancements in deep learning have shown promise in automating sleep stage classification using a single PSG channel. However, variations in PSG acquisition devices and environments mean that the number of PSG channels can differ across sleep centers. To integrate a sleep staging method into clinical practice effectively, it must accommodate a flexible number of PSG channels. In this paper, we proposed FlexSleepTransformer, a transformer-based model designed to handle varying number of input channels, making it adaptable to diverse sleep staging datasets. We evaluated FlexSleepTransformer using two distinct datasets: the public SleepEDF-78 dataset and the local SleepUHS dataset. Notably, FlexSleepTransformer is the first model capable of simultaneously training on datasets with differing number of PSG channels. Our experiments showed that FlexSleepTransformer trained on both datasets together achieved 98% of the accuracy compared to models trained on each dataset individually. Furthermore, it outperformed models trained exclusively on one dataset when tested on the other dataset. Additionally, FlexSleepTransformer surpassed state-of-the-art CNN and RNN-based models on both datasets. Due to its adaptability with varying channels numbers, FlexSleepTransformer holds significant potential for clinical adoption, especially when trained with data from a wide range of sleep centers.
临床睡眠诊断传统上依赖于多导睡眠图(PSG)和睡眠阶段的专家手动分类。深度学习的最新进展表明,使用单个 PSG 通道自动进行睡眠阶段分类具有很大的潜力。然而,由于 PSG 采集设备和环境的差异,不同的睡眠中心 PSG 通道数量可能不同。为了有效地将睡眠分期方法整合到临床实践中,它必须适应灵活数量的 PSG 通道。在本文中,我们提出了 FlexSleepTransformer,这是一种基于转换器的模型,旨在处理不同数量的输入通道,使其能够适应各种睡眠分期数据集。我们使用两个不同的数据集评估了 FlexSleepTransformer:公共 SleepEDF-78 数据集和本地 SleepUHS 数据集。值得注意的是,FlexSleepTransformer 是第一个能够同时在具有不同 PSG 通道数量的数据集上进行训练的模型。我们的实验表明,与分别在每个数据集上训练的模型相比,在两个数据集上一起训练的 FlexSleepTransformer 达到了 98%的准确率。此外,当在另一个数据集上进行测试时,它优于仅在一个数据集上训练的模型。此外,FlexSleepTransformer 在两个数据集上均优于基于 CNN 和 RNN 的最新模型。由于其对不同通道数量的适应性,FlexSleepTransformer 在临床应用中具有很大的潜力,特别是在使用来自广泛的睡眠中心的数据进行训练时。