Suppr超能文献

合成健康数据:真实的伦理承诺与危险。

Synthetic Health Data: Real Ethical Promise and Peril.

出版信息

Hastings Cent Rep. 2024 Sep;54(5):8-13. doi: 10.1002/hast.4911.

Abstract

Researchers and practitioners are increasingly using machine-generated synthetic data as a tool for advancing health science and practice, by expanding access to health data while-potentially-mitigating privacy and related ethical concerns around data sharing. While using synthetic data in this way holds promise, we argue that it also raises significant ethical, legal, and policy concerns, including persistent privacy and security problems, accuracy and reliability issues, worries about fairness and bias, and new regulatory challenges. The virtue of synthetic data is often understood to be its detachment from the data subjects whose measurement data is used to generate it. However, we argue that addressing the ethical issues synthetic data raises might require bringing data subjects back into the picture, finding ways that researchers and data subjects can be more meaningfully engaged in the construction and evaluation of datasets and in the creation of institutional safeguards that promote responsible use.

摘要

研究人员和从业者越来越多地使用机器生成的合成数据作为推进健康科学和实践的工具,通过扩大对健康数据的获取,同时潜在地减轻数据共享方面的隐私和相关伦理问题。虽然以这种方式使用合成数据具有很大的前景,但我们认为它也引发了重大的伦理、法律和政策问题,包括持续存在的隐私和安全问题、准确性和可靠性问题、对公平和偏见的担忧,以及新的监管挑战。合成数据的优点通常被理解为它与数据主体的分离,数据主体的测量数据被用来生成它。然而,我们认为,解决合成数据引发的伦理问题可能需要将数据主体重新纳入考虑范围,寻找让研究人员和数据主体能够更有意义地参与数据集的构建和评估,以及创建促进负责任使用的机构保障措施的方法。

相似文献

1
Synthetic Health Data: Real Ethical Promise and Peril.
Hastings Cent Rep. 2024 Sep;54(5):8-13. doi: 10.1002/hast.4911.
4
Privacy-Enhancing Technologies in Biomedical Data Science.
Annu Rev Biomed Data Sci. 2024 Aug;7(1):317-343. doi: 10.1146/annurev-biodatasci-120423-120107.
5
What Do We Mean by Sharing of Patient Data? DaSH: A Data Sharing Hierarchy of Privacy and Ethical Challenges.
Appl Clin Inform. 2024 Oct;15(5):833-841. doi: 10.1055/a-2373-3291. Epub 2024 Jul 25.
6
Ethical concerns on sharing genomic data including patients' family members.
BMC Med Ethics. 2018 Jun 18;19(1):61. doi: 10.1186/s12910-018-0310-5.
8
9
Ethical considerations for artificial intelligence in dermatology: a scoping review.
Br J Dermatol. 2024 May 17;190(6):789-797. doi: 10.1093/bjd/ljae040.
10
Consent and confidentiality in the light of recent demands for data sharing.
Biom J. 2017 Mar;59(2):240-250. doi: 10.1002/bimj.201500044. Epub 2016 Feb 3.

引用本文的文献

1
The current status and future directions of artificial intelligence in the prediction, diagnosis, and treatment of liver diseases.
Digit Health. 2025 Apr 13;11:20552076251325418. doi: 10.1177/20552076251325418. eCollection 2025 Jan-Dec.
2
Synthetic data and ELSI-focused computational checklists-A survey of biomedical professionals' views.
PLOS Digit Health. 2024 Nov 20;3(11):e0000666. doi: 10.1371/journal.pdig.0000666. eCollection 2024 Nov.

本文引用的文献

1
Harnessing the power of synthetic data in healthcare: innovation, application, and privacy.
NPJ Digit Med. 2023 Oct 9;6(1):186. doi: 10.1038/s41746-023-00927-3.
3
Synthetic data could be better than real data.
Nature. 2023 Apr 27. doi: 10.1038/d41586-023-01445-8.
5
Synthetic data in health care: A narrative review.
PLOS Digit Health. 2023 Jan 6;2(1):e0000082. doi: 10.1371/journal.pdig.0000082. eCollection 2023 Jan.
6
A Multifaceted benchmarking of synthetic electronic health record generation models.
Nat Commun. 2022 Dec 9;13(1):7609. doi: 10.1038/s41467-022-35295-1.
7
DataSifterText: Partially Synthetic Text Generation for Sensitive Clinical Notes.
J Med Syst. 2022 Nov 16;46(12):96. doi: 10.1007/s10916-022-01880-6.
8
Shifting machine learning for healthcare from development to deployment and from models to data.
Nat Biomed Eng. 2022 Dec;6(12):1330-1345. doi: 10.1038/s41551-022-00898-y. Epub 2022 Jul 4.
9
Synthetic patient data in health care: a widening legal loophole.
Lancet. 2022 Apr 23;399(10335):1601-1602. doi: 10.1016/S0140-6736(22)00232-X. Epub 2022 Mar 28.
10
The Problem of Fairness in Synthetic Healthcare Data.
Entropy (Basel). 2021 Sep 4;23(9):1165. doi: 10.3390/e23091165.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验