Wu Naiteng, Zhao Zibo, Zhang Yiming, Hua Ran, Li Jin, Liu Guilong, Guo Donglei, Zhao Jianguo, Cao Ang, Sun Guang, Hou Hongshuai, Liu Xianming
Key Laboratory of Function-oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, China.
Key Laboratory of Function-oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, China; School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
J Colloid Interface Sci. 2025 Feb;679(Pt B):990-1000. doi: 10.1016/j.jcis.2024.10.175. Epub 2024 Oct 28.
The synergistic effect of two metallic elements in metal sulfides is regarded as a promising route for constructing advanced anodes for sodium-ion batteries (SIBs). However, the explorations of intricate interactions and structural evolution in host material are often overlooked, which are crucial for the performance optimization. Herein, a bimetallic sulfide CuFeS and FeS/CuS heterostructure with similar hollow nanorods morphology is obtained by regulating sulfuration conditions. Compared to the FeS/CuS heterostructure, the interaction between CuSFe in CuFeS weakens the strength of iron-sulfur bonds, thereby facilitating the kinetics of the sodiation reaction and enabling fast-charging capability. Moreover, the higher adsorption of NaF enables CuFeS to form a thinner solid electrolyte interface film with richer content of inorganic components. Coupled with the presence of stable intermediate phase, CuFeS delivers the excellent electrochemical performances, including a high capacity of 611 mAh/g after 200 cycles at 1 A/g, and 408 mAh/g after 1000 cycles at 30 A/g. Furthermore, CuFeS also demonstrates a remarkable capacity retention of 88 % after 200 cycles at 1 A/g in full-cells. This work highlights the potential of CuFeS in SIBs while elucidating the underlying factors contributing to the exceptional performance of bimetallic sulfides.
金属硫化物中两种金属元素的协同效应被认为是构建钠离子电池(SIBs)先进负极的一条有前景的途径。然而,宿主材料中复杂相互作用和结构演变的探索常常被忽视,而这些对于性能优化至关重要。在此,通过调节硫化条件获得了具有相似中空纳米棒形态的双金属硫化物CuFeS和FeS/CuS异质结构。与FeS/CuS异质结构相比,CuFeS中CuSFe之间的相互作用削弱了铁硫键的强度,从而促进了钠化反应的动力学并实现了快速充电能力。此外,NaF的更高吸附使CuFeS能够形成更薄且无机成分含量更丰富的固体电解质界面膜。再加上稳定中间相的存在,CuFeS展现出优异的电化学性能,包括在1 A/g下循环200次后具有611 mAh/g的高容量,以及在30 A/g下循环1000次后具有408 mAh/g的容量。此外,在全电池中,CuFeS在1 A/g下循环200次后也表现出88%的显著容量保持率。这项工作突出了CuFeS在钠离子电池中的潜力,同时阐明了导致双金属硫化物优异性能的潜在因素。