Suppr超能文献

一种具有特征融合的混合CNN-Bi-LSTM模型用于精确的癫痫发作检测。

A hybrid CNN-Bi-LSTM model with feature fusion for accurate epilepsy seizure detection.

作者信息

Cao Xiaoshuai, Zheng Shaojie, Zhang Jincan, Chen Wenna, Du Ganqin

机构信息

The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.

College of Information Engineering, Henan University of Science and Technology, Luoyang, China.

出版信息

BMC Med Inform Decis Mak. 2025 Jan 6;25(1):6. doi: 10.1186/s12911-024-02845-0.

Abstract

BACKGROUND

The diagnosis and treatment of epilepsy continue to face numerous challenges, highlighting the urgent need for the development of rapid, accurate, and non-invasive methods for seizure detection. In recent years, advancements in the analysis of electroencephalogram (EEG) signals have garnered widespread attention, particularly in the area of seizure recognition.

METHODS

A novel hybrid deep learning approach that combines feature fusion for efficient seizure detection is proposed in this study. First, the Discrete Wavelet Transform (DWT) is applied to perform a five-level decomposition of the raw EEG signals, from which time-frequency and nonlinear features are extracted from the decomposed sub-bands. To eliminate redundant features, Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is employed to select the most distinctive features for fusion. Finally, seizure states are classified using Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-Bi-LSTM).

RESULTS

The method was rigorously validated on the Bonn and New Delhi datasets. In the binary classification tasks, both the D-E group (Bonn dataset) and the Interictal-Ictal group (New Delhi dataset) achieved 100% accuracy, 100% sensitivity, 100% specificity, 100% precision, and 100% F1-score. In the three-class classification task A-D-E on the Bonn dataset, the model performed excellently, achieving 96.19% accuracy, 95.08% sensitivity, 97.34% specificity, 97.49% precision, and 96.18% F1-score. In addition, the proposed method was further validated on the larger and more clinically relevant CHB-MIT dataset, achieving average metrics of 98.43% accuracy, 97.84% sensitivity, 99.21% specificity, 99.14% precision, and an F1 score of 98.39%. Compared to existing literature, our method outperformed several recent studies in similar classification tasks, underscoring the effectiveness and advancement of the approach presented in this research.

CONCLUSION

The findings indicate that the proposed method demonstrates a high level of effectiveness in detecting seizures, which is a crucial aspect of managing epilepsy. By improving the accuracy of seizure detection, this method has the potential to significantly enhance the process of diagnosing and treating individuals affected by epilepsy. This advancement could lead to more tailored treatment plans, timely interventions, and ultimately, better quality of life for patients.

摘要

背景

癫痫的诊断和治疗仍然面临众多挑战,这凸显了迫切需要开发快速、准确且无创的癫痫发作检测方法。近年来,脑电图(EEG)信号分析方面的进展引起了广泛关注,尤其是在癫痫发作识别领域。

方法

本研究提出了一种新颖的混合深度学习方法,该方法结合特征融合以实现高效的癫痫发作检测。首先,应用离散小波变换(DWT)对原始EEG信号进行五级分解,从分解后的子带中提取时频和非线性特征。为了消除冗余特征,采用支持向量机递归特征消除(SVM-RFE)来选择最具特色的特征进行融合。最后,使用卷积神经网络-双向长短期记忆(CNN-Bi-LSTM)对癫痫发作状态进行分类。

结果

该方法在波恩和新德里数据集上进行了严格验证。在二分类任务中,D-E组(波恩数据集)和发作间期-发作期组(新德里数据集)均实现了100%的准确率、100%的灵敏度、100%的特异性、100%的精确率和100%的F1分数。在波恩数据集上的三分类任务A-D-E中,该模型表现出色,准确率达到96.19%,灵敏度为95.08%,特异性为97.34%,精确率为97.49%,F1分数为96.18%。此外,所提出的方法在更大且更具临床相关性的CHB-MIT数据集上进一步得到验证,平均指标为准确率98.43%、灵敏度97.84%、特异性99.21%、精确率99.14%,F1分数为98.39%。与现有文献相比,我们的方法在类似分类任务中优于最近的几项研究,突出了本研究中所提出方法的有效性和先进性。

结论

研究结果表明,所提出的方法在癫痫发作检测中显示出高度有效性,这是癫痫管理的关键方面。通过提高癫痫发作检测的准确性,该方法有可能显著改善癫痫患者的诊断和治疗过程。这一进展可能会带来更具针对性的治疗方案、及时的干预措施,并最终提高患者的生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6918/11706039/d9e17139bb66/12911_2024_2845_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验