Masison Joseph, Lehmann Harold P, Wan Joy
University of Connecticut School of Medicine, Farmington, Connecticut, USA.
Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
J Invest Dermatol. 2025 May;145(5):1008-1016. doi: 10.1016/j.jid.2024.08.025. Epub 2024 Nov 1.
Querying electronic health records databases to accurately identify specific cohorts of patients has countless observational and interventional research applications. Computable phenotypes are computationally executable, explicit sets of selection criteria composed of data elements, logical expressions, and a combination of natural language processing and machine learning techniques enabling expedited patient cohort identification. Phenotyping encompasses a range of implementations, each with advantages and use cases. In this paper, the dermatologic computable phenotype literature is reviewed. We identify and evaluate approaches and community supports for computable phenotyping that have been used both generally and within dermatology and, as a case study, focus on studied phenotypes for atopic dermatitis.
查询电子健康记录数据库以准确识别特定患者群体具有无数的观察性和干预性研究应用。可计算表型是由数据元素、逻辑表达式以及自然语言处理和机器学习技术组合而成的可计算执行的明确选择标准集,能够加快患者群体的识别。表型分析涵盖一系列实现方式,每种方式都有其优点和用例。本文对皮肤病学可计算表型文献进行了综述。我们识别并评估了一般情况下以及皮肤病学领域中使用的可计算表型分析方法和社区支持,并以特应性皮炎的研究表型为例进行了重点研究。