Suppr超能文献

基于机器学习的自动骨导测听仪的性能和可靠性评估。

Performance and Reliability Evaluation of an Automated Bone-Conduction Audiometry Using Machine Learning.

机构信息

Department of Otorhinolaryngology-Head and Neck Surgery, Rennes University Hospital, Rennes, France.

R&D Department, My Medical Assistant SAS, Reims, France.

出版信息

Trends Hear. 2024 Jan-Dec;28:23312165241286456. doi: 10.1177/23312165241286456.

Abstract

To date, pure-tone audiometry remains the gold standard for clinical auditory testing. However, pure-tone audiometry is time-consuming and only provides a discrete estimate of hearing acuity. Here, we aim to address these two main drawbacks by developing a machine learning (ML)-based approach for fully automated bone-conduction (BC) audiometry tests with forehead vibrator placement. Study 1 examines the occlusion effects when the headphones are positioned on both ears during BC forehead testing. Study 2 describes the ML-based approach for BC audiometry, with automated contralateral masking rules, compensation for occlusion effects and forehead-mastoid corrections. Next, the performance of ML-audiometry is examined in comparison to manual and conventional BC audiometry with mastoid placement. Finally, Study 3 examines the test-retest reliability of ML-audiometry. Our results show no significant performance difference between automated ML-audiometry and manual conventional audiometry. High test-retest reliability is achieved with the automated ML-audiometry. Together, our findings demonstrate the performance and reliability of the automated ML-based BC audiometry for both normal-hearing and hearing-impaired adult listeners with mild to severe hearing losses.

摘要

迄今为止,纯音测听仍然是临床听觉测试的金标准。然而,纯音测听耗时且仅提供听力敏锐度的离散估计。在这里,我们旨在通过开发一种基于机器学习 (ML) 的方法来解决这两个主要缺点,该方法用于使用额振动器进行全自动骨传导 (BC) 听力测试。研究 1 检查了在 BC 额测试中双耳佩戴耳机时的闭塞效应。研究 2 描述了基于 ML 的 BC 听力测试方法,具有自动化的对侧掩蔽规则、闭塞效应补偿和额 - 乳突校正。接下来,将 ML 听力测试的性能与使用乳突放置的手动和传统 BC 听力测试进行比较。最后,研究 3 检查了 ML 听力测试的测试 - 再测试可靠性。我们的结果表明,自动 ML 听力测试和手动传统听力测试之间没有显著的性能差异。自动 ML 听力测试具有高的测试 - 再测试可靠性。总之,我们的研究结果表明,对于轻度至重度听力损失的正常听力和听力受损的成年听众,自动基于 ML 的 BC 听力测试具有良好的性能和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03ee/11703668/7c3912493fa4/10.1177_23312165241286456-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验