Suppr超能文献

采用机器学习听力测定法的动态掩蔽听力图

Dynamically Masked Audiograms With Machine Learning Audiometry.

作者信息

Heisey Katherine L, Walker Alexandra M, Xie Kevin, Abrams Jenna M, Barbour Dennis L

机构信息

Department of Biomedical Engineering, Laboratory of Sensory Neuroscience and Neuroengineering, Washington University in St. Louis, St. Louis, Missouri, USA.

Program in Audiology and Communication Sciences, Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, USA.

出版信息

Ear Hear. 2020 Nov/Dec;41(6):1692-1702. doi: 10.1097/AUD.0000000000000891.

Abstract

OBJECTIVES

When one ear of an individual can hear significantly better than the other ear, evaluating the worse ear with loud probe tones may require delivering masking noise to the better ear to prevent the probe tones from inadvertently being heard by the better ear. Current masking protocols are confusing, laborious, and time consuming. Adding a standardized masking protocol to an active machine learning audiogram procedure could potentially alleviate all of these drawbacks by dynamically adapting the masking as needed for each individual. The goal of this study is to determine the accuracy and efficiency of automated machine learning masking for obtaining true hearing thresholds.

DESIGN

Dynamically masked automated audiograms were collected for 29 participants between the ages of 21 and 83 (mean 43, SD 20) with a wide range of hearing abilities. Normal-hearing listeners were given unmasked and masked machine learning audiogram tests. Listeners with hearing loss were given a standard audiogram test by an audiologist, with masking stimuli added as clinically determined, followed by a masked machine learning audiogram test. The hearing thresholds estimated for each pair of techniques were compared at standard audiogram frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz).

RESULTS

Masked and unmasked machine learning audiogram threshold estimates matched each other well in normal-hearing listeners, with a mean absolute difference between threshold estimates of 3.4 dB. Masked machine learning audiogram thresholds also matched well the thresholds determined by a conventional masking procedure, with a mean absolute difference between threshold estimates for listeners with low asymmetry and high asymmetry between the ears, respectively, of 4.9 and 2.6 dB. Notably, out of 6200 masked machine learning audiogram tone deliveries for this study, no instances of tones detected by the nontest ear were documented. The machine learning methods were also generally faster than the manual methods, and for some listeners, substantially so.

CONCLUSIONS

Dynamically masked audiograms achieve accurate true threshold estimates and reduce test time compared with current clinical masking procedures. Dynamic masking is a compelling alternative to the methods currently used to evaluate individuals with highly asymmetric hearing, yet can also be used effectively and efficiently for anyone.

摘要

目的

当一个人的一只耳朵听力明显优于另一只耳朵时,用高声强探测音评估听力较差的耳朵可能需要向听力较好的耳朵施加掩蔽噪声,以防止探测音被听力较好的耳朵意外听到。当前的掩蔽方案令人困惑、费力且耗时。在主动机器学习听力图程序中添加标准化的掩蔽方案,有可能通过根据每个人的需要动态调整掩蔽来缓解所有这些缺点。本研究的目的是确定自动机器学习掩蔽在获取真实听力阈值方面的准确性和效率。

设计

为29名年龄在21至83岁(平均43岁,标准差20岁)、听力能力范围广泛的参与者收集了动态掩蔽自动听力图。听力正常的受试者接受了未掩蔽和掩蔽的机器学习听力图测试。听力损失的受试者由听力学家进行标准听力图测试,并根据临床判断添加掩蔽刺激,随后进行掩蔽机器学习听力图测试。在标准听力图频率(即0.25、0.5、1、2、4、8kHz)下比较了每种技术对估计的听力阈值。

结果

在听力正常的受试者中,掩蔽和未掩蔽的机器学习听力图阈值估计相互匹配良好,阈值估计的平均绝对差异为3.4dB。掩蔽机器学习听力图阈值也与传统掩蔽程序确定的阈值匹配良好,双耳低不对称和高不对称受试者的阈值估计平均绝对差异分别为4.9dB和2.6dB。值得注意的是,在本研究的6200次掩蔽机器学习听力图音调发放中,未记录到非测试耳检测到音调的情况。机器学习方法通常也比手动方法更快,对一些受试者来说,快得多。

结论

与当前的临床掩蔽程序相比,动态掩蔽听力图能实现准确的真实阈值估计并减少测试时间。动态掩蔽是目前用于评估听力高度不对称个体的方法的有力替代方案,并且对任何人都可以有效且高效地使用。

相似文献

2
Online Machine Learning Audiometry.在线机器学习测听
Ear Hear. 2019 Jul/Aug;40(4):918-926. doi: 10.1097/AUD.0000000000000669.
10
The significance of masking for the poor hearing ear in pure tone audiometry.纯音听力测定中对听力较差耳朵进行掩蔽的意义。
Acta Otolaryngol. 2023 Nov;143(sup1):S34-S38. doi: 10.1080/00016489.2023.2278712. Epub 2024 Feb 13.

本文引用的文献

1
Automated Audiometry: A Review of the Implementation and Evaluation Methods.自动听力测定法:实施与评估方法综述
Healthc Inform Res. 2018 Oct;24(4):263-275. doi: 10.4258/hir.2018.24.4.263. Epub 2018 Oct 31.
2
Online Machine Learning Audiometry.在线机器学习测听
Ear Hear. 2019 Jul/Aug;40(4):918-926. doi: 10.1097/AUD.0000000000000669.
3
Conjoint psychometric field estimation for bilateral audiometry.双侧听阈的联合心理物理域估计。
Behav Res Methods. 2019 Jun;51(3):1271-1285. doi: 10.3758/s13428-018-1062-3.
6
A Survey of Audiological Practices in the United States.美国听力学实践调查
Am J Audiol. 1994 Jul 1;3(2):20-6. doi: 10.1044/1059-0889.0302.20.
9
Prevalence of hearing loss in the United States by industry.美国各行业听力损失的流行率。
Am J Ind Med. 2013 Jun;56(6):670-81. doi: 10.1002/ajim.22082. Epub 2012 Jul 5.
10
Inter-aural attenuation with insert earphones.插入式耳机的两耳间衰减。
Int J Audiol. 2010 Oct;49(10):799-801. doi: 10.3109/14992027.2010.497940.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验