Suppr超能文献

在线机器学习测听

Online Machine Learning Audiometry.

机构信息

Laboratory of Sensory Neuroscience and Neuroengineering, Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.

Program in Audiology and Communication Sciences, Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, USA.

出版信息

Ear Hear. 2019 Jul/Aug;40(4):918-926. doi: 10.1097/AUD.0000000000000669.

Abstract

OBJECTIVES

A confluence of recent developments in cloud computing, real-time web audio and machine learning psychometric function estimation has made wide dissemination of sophisticated turn-key audiometric assessments possible. The authors have combined these capabilities into an online (i.e., web-based) pure-tone audiogram estimator intended to empower researchers and clinicians with advanced hearing tests without the need for custom programming or special hardware. The objective of this study was to assess the accuracy and reliability of this new online machine learning audiogram method relative to a commonly used hearing threshold estimation technique also implemented online for the first time in the same platform.

DESIGN

The authors performed air conduction pure-tone audiometry on 21 participants between the ages of 19 and 79 years (mean 41, SD 21) exhibiting a wide range of hearing abilities. For each ear, two repetitions of online machine learning audiogram estimation and two repetitions of online modified Hughson-Westlake ascending-descending audiogram estimation were acquired by an audiologist using the online software tools. The estimated hearing thresholds of these two techniques were compared at standard audiogram frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz).

RESULTS

The two threshold estimation methods delivered very similar threshold estimates at standard audiogram frequencies. Specifically, the mean absolute difference between threshold estimates was 3.24 ± 5.15 dB. The mean absolute differences between repeated measurements of the online machine learning procedure and between repeated measurements of the Hughson-Westlake procedure were 2.85 ± 6.57 dB and 1.88 ± 3.56 dB, respectively. The machine learning method generated estimates of both threshold and spread (i.e., the inverse of psychometric slope) continuously across the entire frequency range tested from fewer samples on average than the modified Hughson-Westlake procedure required to estimate six discrete thresholds.

CONCLUSIONS

Online machine learning audiogram estimation in its current form provides all the information of conventional threshold audiometry with similar accuracy and reliability in less time. More importantly, however, this method provides additional audiogram details not provided by other methods. This standardized platform can be readily extended to bone conduction, masking, spectrotemporal modulation, speech perception, etc., unifying audiometric testing into a single comprehensive procedure efficient enough to become part of the standard audiologic workup.

摘要

目的

云计算、实时网络音频和机器学习心理物理函数估计的最新发展使得复杂的即用型听力评估得以广泛传播。作者将这些功能结合到一个在线(即基于网络)纯音听力图估计器中,旨在为研究人员和临床医生提供先进的听力测试,而无需定制编程或特殊硬件。本研究的目的是评估这种新的在线机器学习听力图方法的准确性和可靠性,该方法相对于首次在同一平台上在线实施的常用听力阈值估计技术。

设计

作者对 21 名年龄在 19 至 79 岁(平均 41 岁,标准差 21 岁)、听力能力差异较大的参与者进行了空气传导纯音测听。对于每只耳朵,由听力学家使用在线软件工具采集两次在线机器学习听力图估计和两次在线改良 Hughson-Westlake 升-降听力图估计。将这两种技术的估计阈值与标准听力图频率(即 0.25、0.5、1、2、4、8 kHz)进行比较。

结果

两种阈值估计方法在标准听力图频率下提供了非常相似的阈值估计值。具体来说,阈值估计值的平均绝对差为 3.24 ± 5.15 dB。在线机器学习程序的重复测量之间以及 Hughson-Westlake 程序的重复测量之间的平均绝对差异分别为 2.85 ± 6.57 dB 和 1.88 ± 3.56 dB。机器学习方法从平均需要估计六个离散阈值的改良 Hughson-Westlake 方法所需的更少样本中,连续在整个测试频率范围内生成阈值和扩展(即心理物理斜率的倒数)的估计值。

结论

在线机器学习听力图估计在其当前形式下,以类似的准确性和可靠性在更短的时间内提供了传统阈值听力测试的所有信息。然而,更重要的是,该方法提供了其他方法无法提供的其他听力图细节。这种标准化平台可以很容易地扩展到骨导、掩蔽、频谱时间调制、言语感知等领域,将听力测试统一到一个高效的综合程序中,使其成为标准听力学检查的一部分。

相似文献

1
Online Machine Learning Audiometry.在线机器学习测听
Ear Hear. 2019 Jul/Aug;40(4):918-926. doi: 10.1097/AUD.0000000000000669.

引用本文的文献

7
Digital Therapeutics in Hearing Healthcare: Evidence-Based Review.听力保健中的数字疗法:基于证据的综述。
J Audiol Otol. 2024 Jul;28(3):159-166. doi: 10.7874/jao.2023.00780. Epub 2024 Jul 9.
9
Active transfer learning for audiogram estimation.用于听力图估计的主动迁移学习。
Front Digit Health. 2024 Mar 11;6:1267799. doi: 10.3389/fdgth.2024.1267799. eCollection 2024.

本文引用的文献

1
Conjoint psychometric field estimation for bilateral audiometry.双侧听阈的联合心理物理域估计。
Behav Res Methods. 2019 Jun;51(3):1271-1285. doi: 10.3758/s13428-018-1062-3.
9
Audiometric reliability in industry.
Arch Environ Health. 1971 Jan;22(1):113-8. doi: 10.1080/00039896.1971.10665821.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验