Suppr超能文献

用于可持续合金设计的主动学习策略。

Active learning strategies for the design of sustainable alloys.

作者信息

Rao Ziyuan, Bajpai Anurag, Zhang Hongbin

机构信息

Max Planck Institute for Sustainable Materials, Düsseldorf, Germany.

National Engineering Research Center of Light Alloy Net Forming School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

出版信息

Philos Trans A Math Phys Eng Sci. 2024 Dec 2;382(2284):20230242. doi: 10.1098/rsta.2023.0242. Epub 2024 Nov 4.

Abstract

Active learning comprises machine learning-based approaches that integrate surrogate model inference, exploitation and exploration strategies with active experimental feedback into a closed-loop framework. This approach aims at describing and predicting specific material properties, without requiring lengthy, expensive or repetitive experiments. Recently, active learning has shown potential as an approach for the design of sustainable materials, such as scrap-compatible alloys, and for enhancing the longevity of metallic materials. However, in-depth investigations into suited best-practice strategies of active learning for sustainable materials science are still scarce. This study aims to present and discuss active learning strategies for developing and improving sustainable alloys, addressing single-objective and multi-objective learning and modelling scenarios. As model cases, we discuss active learning strategies for optimizing Invar and magnetic alloys, representing single-objective scenarios, and more general steel design approaches, exemplifying multi-objective optimization. We discuss the significance of finding the right balance between exploitation and exploration strategies in active learning and suggest strategies to reduce the number of iterations across diverse scenarios. This kind of research aims to find metrics for a more effective application of active learning and is used here to advance the field of sustainable alloy design.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.

摘要

主动学习包括基于机器学习的方法,这些方法将代理模型推理、利用和探索策略与主动实验反馈集成到一个闭环框架中。这种方法旨在描述和预测特定的材料特性,而无需进行冗长、昂贵或重复的实验。最近,主动学习已显示出作为一种设计可持续材料(如废料兼容合金)和提高金属材料寿命的方法的潜力。然而,对于可持续材料科学中主动学习的合适最佳实践策略的深入研究仍然很少。本研究旨在提出并讨论用于开发和改进可持续合金的主动学习策略,涉及单目标和多目标学习及建模场景。作为模型案例,我们讨论了用于优化因瓦合金和磁性合金(代表单目标场景)的主动学习策略,以及更通用的钢设计方法(作为多目标优化的示例)。我们讨论了在主动学习中在利用和探索策略之间找到正确平衡的重要性,并提出了在不同场景下减少迭代次数的策略。这类研究旨在找到更有效应用主动学习的指标,并在此用于推动可持续合金设计领域的发展。本文是“可持续金属:科学与系统”讨论会议特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5af/11531902/af86a039c5a9/rsta.2023.0242.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验