Daehn Katrin E, Allanore Antoine, Olivetti Elsa A
Materials Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Philos Trans A Math Phys Eng Sci. 2024 Dec 2;382(2284):20230234. doi: 10.1098/rsta.2023.0234. Epub 2024 Nov 4.
Energy infrastructure requires metals, and metals production requires energy. A transparent, physical model of the metals-energy system is presented to explore under what conditions this dependence constrains or accelerates the transition to a net-zero economy. While the mineral (as high as 340 Mt yr iron ore, 210 Mt yr limestone, 250 Mt yr bauxite and 5.5 Gt yr copper ore in the 2040-2050 decade, assuming no improvements) and total energy (up to 22 EJ yr) requirements for building low-carbon energy infrastructure are significant, it compares favourably with the current extraction and energy use supporting the fossil fuel system (15 Gt yr fossil minerals and ~38 EJ yr). There are levers to significantly reduce material use and associated impacts over time. The metals industry can play a key reinforcing role in the transition by adapting to the increasing supply of renewable electricity. Specifically, direct electrolysis can extract metal from ore close to the thermodynamic limit, to make efficient use of low-C electricity. The unique features of emerging technologies for iron extraction, molten oxide electrolysis and molten sulphide electrolysis are considered in this evolving system. Electrification enables elegant separations and provides a pathway to build out infrastructure while reducing environmental impacts, though material efficiency measures will still be crucial to meet 2050 carbon budgets.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.
能源基础设施需要金属,而金属生产需要能源。本文提出了一个金属-能源系统的透明物理模型,以探讨这种依赖关系在何种条件下会限制或加速向净零经济的转型。假设没有改进措施,在2040-2050十年间,建设低碳能源基础设施所需的矿产(高达每年3.4亿吨铁矿石、2.1亿吨石灰石、2.5亿吨铝土矿和每年55亿吨铜矿)和总能源(高达每年22亿吉焦)需求巨大,但与目前支持化石燃料系统的开采和能源使用量(每年150亿吨化石矿物和约38亿吉焦)相比仍具有优势。随着时间的推移,有一些方法可以显著减少材料使用及其相关影响。金属行业可以通过适应不断增加的可再生电力供应,在转型中发挥关键的强化作用。具体而言,直接电解可以在接近热力学极限的情况下从矿石中提取金属,从而有效利用低碳电力。在这个不断发展的系统中,考虑了铁提取、熔融氧化物电解和熔融硫化物电解等新兴技术的独特特点。电气化能够实现精细分离,并为建设基础设施提供一条途径,同时减少环境影响,不过材料效率措施对于实现2050年的碳预算仍然至关重要。本文是“可持续金属:科学与系统”讨论会议题的一部分。