Suppr超能文献

全膝关节置换术后 90 天内的全因死亡率可以预测:一项国际网络研究旨在开发和验证预测模型。

90-Day all-cause mortality can be predicted following a total knee replacement: an international, network study to develop and validate a prediction model.

机构信息

Erasmus University Medical Centre, Rotterdam, The Netherlands.

Janssen Research and Development, Raritan, NJ, USA.

出版信息

Knee Surg Sports Traumatol Arthrosc. 2022 Sep;30(9):3068-3075. doi: 10.1007/s00167-021-06799-y. Epub 2021 Dec 6.

Abstract

PURPOSE

The purpose of this study was to develop and validate a prediction model for 90-day mortality following a total knee replacement (TKR). TKR is a safe and cost-effective surgical procedure for treating severe knee osteoarthritis (OA). Although complications following surgery are rare, prediction tools could help identify high-risk patients who could be targeted with preventative interventions. The aim was to develop and validate a simple model to help inform treatment choices.

METHODS

A mortality prediction model for knee OA patients following TKR was developed and externally validated using a US claims database and a UK general practice database. The target population consisted of patients undergoing a primary TKR for knee OA, aged ≥ 40 years and registered for ≥ 1 year before surgery. LASSO logistic regression models were developed for post-operative (90-day) mortality. A second mortality model was developed with a reduced feature set to increase interpretability and usability.

RESULTS

A total of 193,615 patients were included, with 40,950 in The Health Improvement Network (THIN) database and 152,665 in Optum. The full model predicting 90-day mortality yielded AUROC of 0.78 when trained in OPTUM and 0.70 when externally validated on THIN. The 12 variable model achieved internal AUROC of 0.77 and external AUROC of 0.71 in THIN.

CONCLUSIONS

A simple prediction model based on sex, age, and 10 comorbidities that can identify patients at high risk of short-term mortality following TKR was developed that demonstrated good, robust performance. The 12-feature mortality model is easily implemented and the performance suggests it could be used to inform evidence based shared decision-making prior to surgery and targeting prophylaxis for those at high risk.

LEVEL OF EVIDENCE

III.

摘要

目的

本研究旨在开发和验证全膝关节置换术(TKR)后 90 天死亡率的预测模型。TKR 是治疗严重膝骨关节炎(OA)的一种安全且具有成本效益的手术。尽管手术后并发症很少见,但预测工具可以帮助识别高风险患者,以便针对这些患者采取预防措施。本研究旨在开发和验证一种简单的模型,以帮助做出治疗决策。

方法

使用美国索赔数据库和英国普通实践数据库开发并验证了膝关节 OA 患者 TKR 后死亡率的预测模型。目标人群包括因膝骨关节炎接受初次 TKR 手术、年龄≥40 岁且手术前登记≥1 年的患者。使用 LASSO 逻辑回归模型对术后(90 天)死亡率进行建模。开发了一个具有简化特征集的第二个死亡率模型,以提高可解释性和可用性。

结果

共纳入 193615 例患者,其中 152665 例来自 Optum,40950 例来自 The Health Improvement Network(THIN)数据库。在 OPTUM 中训练时,全模型预测 90 天死亡率的 AUC 为 0.78,在 THIN 中外部验证时为 0.70。在 THIN 中,12 变量模型的内部 AUC 为 0.77,外部 AUC 为 0.71。

结论

本研究开发了一种基于性别、年龄和 10 种合并症的简单预测模型,该模型可以识别 TKR 后短期死亡率高的患者,具有良好、稳健的性能。该 12 特征死亡率模型易于实施,且性能表明其可用于术前基于证据的共同决策,并针对高风险患者进行预防。

证据水平

III。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73c5/9418076/feb93de31a0d/167_2021_6799_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验