Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy.
Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy.
Pathol Res Pract. 2024 Nov;263:155671. doi: 10.1016/j.prp.2024.155671. Epub 2024 Oct 23.
The field of neuropathology, a subspecialty of pathology which studies the diseases affecting the nervous system, is experiencing significant changes due to advancements in artificial intelligence (AI). Traditionally reliant on histological methods and clinical correlations, neuropathology is now experiencing a revolution due to the development of AI technologies like machine learning (ML) and deep learning (DL). These technologies enhance diagnostic accuracy, optimize workflows, and enable personalized treatment strategies. AI algorithms excel at analyzing histopathological images, often revealing subtle morphological changes missed by conventional methods. For example, deep learning models applied to digital pathology can effectively differentiate tumor grades and detect rare pathologies, leading to earlier and more precise diagnoses. Progress in neuroimaging is another helpful tool of AI, as enhanced analysis of MRI and CT scans supports early detection of neurodegenerative diseases. By identifying biomarkers and progression patterns, AI aids in timely therapeutic interventions, potentially slowing disease progression. In molecular pathology, AI's ability to analyze complex genomic data helps uncover the genetic and molecular basis of neuropathological conditions, facilitating personalized treatment plans. AI-driven automation streamlines routine diagnostic tasks, allowing pathologists to focus on complex cases, especially in settings with limited resources. This review explores AI's integration into neuropathology, highlighting its current applications, benefits, challenges, and future directions.
神经病理学是病理学的一个分支,研究影响神经系统的疾病,由于人工智能(AI)的进步,该领域正在发生重大变化。传统上依赖于组织学方法和临床相关性,神经病理学现在由于人工智能技术(如机器学习(ML)和深度学习(DL))的发展而发生了革命。这些技术提高了诊断准确性,优化了工作流程,并实现了个性化的治疗策略。人工智能算法擅长分析组织病理学图像,通常能够揭示传统方法错过的细微形态变化。例如,应用于数字病理学的深度学习模型可以有效地区分肿瘤分级并检测罕见的病理学,从而实现更早、更准确的诊断。神经影像学的进展是人工智能的另一个有用工具,因为对 MRI 和 CT 扫描的增强分析有助于早期发现神经退行性疾病。通过识别生物标志物和进展模式,人工智能有助于及时进行治疗干预,可能减缓疾病进展。在分子病理学中,人工智能分析复杂基因组数据的能力有助于揭示神经病理学状况的遗传和分子基础,从而促进个性化的治疗计划。人工智能驱动的自动化简化了常规诊断任务,使病理学家能够专注于复杂病例,特别是在资源有限的情况下。这篇综述探讨了人工智能在神经病理学中的整合,强调了其当前的应用、益处、挑战和未来方向。