Bhattacharyya Amitava, Heo Junwon, Priyajanani J, Kim Seon Ho, Khatun Mst Rita, Nagarajan R, Noh Insup
Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
Int J Biol Macromol. 2024 Dec;282(Pt 3):136966. doi: 10.1016/j.ijbiomac.2024.136966. Epub 2024 Oct 28.
The nanocellulosic pellicle derived from the symbiotic culture of bacteria and yeast (Kombucha SCOBY) is an important biomaterial for 3D bioprinting in tissue engineering. However, this nanocellulosic hydrogel has a highly entangled gel network. This needs to be partially modified to improve its processability and extrusion ability for its applications in the 3D bioprinting area. To control its mechanical and biological properties for direct 3D bioprinting applications, uniform reinforcement of nanocellulose-interacting polymers and nanoparticles in such a prefabricated gel network is essential. In this study, the hydrogel network is partially hydrolyzed with organic acid and subsequently transformed into a 3D bioprintable polyelectrolyte complex with chitosan and kaolin nanoparticles without any chemical crosslinker using a handheld 3D bioprinter. This handheld bioprinter ensures homogeneity in both biomixing and bioprinting of chitosan and kaolin within the modified nanocellulose network for multi-layered bioprinted scaffolds through an extensional shear mechanism. The biomixing simulation, mechanical (static, dynamic, and cyclic), 3D bioprinting, and cellular studies confirm the homogeneous biomixing of kaolin nanoparticles and live cells in this nanocellulose-chitosan polyelectrolyte hydrogel. The combination of SCOBY-derived nanocellulose-chitosan bioink with kaolin nanoparticles and a screw-driven handheld extrusion bioprinter demonstrates a promising platform for layer-by-layer regeneration of complex tissues with homogeneous cell/particle distribution with high cell viability.
源自细菌和酵母共生培养物(康普茶共生菌群)的纳米纤维素薄膜是组织工程中3D生物打印的重要生物材料。然而,这种纳米纤维素水凝胶具有高度缠结的凝胶网络。为了将其应用于3D生物打印领域,需要对其进行部分改性以提高其加工性能和挤出能力。为了控制其在直接3D生物打印应用中的机械和生物学性能,在这种预制的凝胶网络中均匀增强与纳米纤维素相互作用的聚合物和纳米颗粒至关重要。在本研究中,水凝胶网络用有机酸进行部分水解,随后使用手持式3D生物打印机,在不使用任何化学交联剂的情况下,与壳聚糖和高岭土纳米颗粒转化为可3D生物打印的聚电解质复合物。这种手持式生物打印机通过拉伸剪切机制,确保壳聚糖和高岭土在改性纳米纤维素网络内的生物混合和生物打印过程中均匀混合,用于多层生物打印支架。生物混合模拟、机械性能(静态、动态和循环)、3D生物打印和细胞研究证实了高岭土纳米颗粒和活细胞在这种纳米纤维素-壳聚糖聚电解质水凝胶中的均匀生物混合。源自康普茶共生菌群的纳米纤维素-壳聚糖生物墨水与高岭土纳米颗粒以及螺杆驱动的手持式挤出生物打印机的组合,展示了一个有前景的平台,可用于具有均匀细胞/颗粒分布和高细胞活力的复杂组织的逐层再生。